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1. INTRODUCTION 

LiDAR (or airborne laser scanning) systems became a dominant player in high-

precision spatial data acquisition in the late 90’s. This new technology quickly 

established itself as the main source of surface information in commercial mapping, 

delivering surface data at decimeter-level vertical accuracy in an almost totally 

automated way.  

Every indication is that transportation and other agencies will be deploying LiDAR 

systems over transportation corridors at an increasing rate in the future. The Ohio 

Department of Transportation is one the first agencies that already operates a state-of-

the-art LiDAR system to support the Office of Aerial Engineering operations. 

Primarily for engineering purposes, the road surface is surveyed at sub-decimeter 

level accuracy. Vehicles on the road represent obstructions to the LiDAR pulses sent 

to reflect off the pavement.  Therefore, a substantial amount of processing must be 

devoted to “removing the vehicle signals” to obtain the actual road surface. Rather 

than removing and discarding the signals, we suggest turning them into traffic flow 

information.  This way, LiDAR surveys dedicated to surface extraction will soon be 

able to provide a valuable byproduct with little additional effort. Since the ODOT 

LiDAR system has been in operation, such data are already available to support the 

traffic flow extraction. 

Acquiring flow data in a timely manner is essential for many transportation processes, 

especially for traffic monitoring and management. Ground-based systems typically 

use loop detectors and video cameras. These systems provide excellent data at a local 

scale, but consequently are less appropriate for monitoring flow patterns over longer 

road segments. Remote sensing sensors, especially airborne systems, however, show 

somewhat complimentary characteristics; namely that the acquired data can 

effectively support flow information extraction in a dynamic manner. Not only can 

vehicle counts and velocities be estimated, but also complex flow patterns such as 

slowdowns and intersection/ramp turning movements can be identified and quantified. 
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2. RESEARCH OBJECTIVES 

The goal of this research is to investigate the feasibility of using LiDAR data 
collected over transportation corridors for extracting traffic flow information. The 
primary objectives of this research project were as follows: 

To develop and test techniques of identifying and extracting vehicles from 
LiDAR data. 

To create vehicle categories and to develop methods for automatic vehicle 
classification. 

To develop and test velocity estimation techniques by the vehicle category.  

To implement methods to test the effectiveness of using LiDAR intensity data 
to support the vehicle extraction, classification, and the velocity estimation 
processes. 

To develop a fusion technique to combine LiDAR and optical image data to 
improve the performance of the vehicle extraction and velocity estimation 
processes. This will also strongly support the road surface extraction process, 
a major interest to the Office of Aerial Engineering. 

To analyze the mutual benefits of combining the surface extraction and traffic 
flow extraction processes. 

To build a metrics to assess the performance of the surface and flow data 
extraction process with respect to various sensor configurations, such as 
LiDAR operational parameters, digital camera performance, flight conditions, 
georeferencing quality, etc. 

To assess the feasibility of real-time data extraction for real-time traffic 
management. 

To prepare a final report to document the findings of this research, and to 
provide meaningful data for future decision-making for traffic management 
purposes. 

3. GENERAL DESCRIPTION OF RESEARCH 

The feasibility of extracting vehicles from LiDAR data had been tested prior to the 
project (see References). Therefore, the project was to extend the investigation of the 
concept viability and then implement a prototype system that could directly support 
traffic management operations. Most of the effort went into algorithmic developments 
and software programming. The objective, to deliver a robust system that could 
support production at ODOT, posed a real difficulty for the research staff as it 
required software engineering skills beyond the usual level in research. The project 
benefited from the recently acquired Optech 30/70 ALTM LiDAR system that went 
into full operation about half way through the project. Three datasets, flown by the 
new LiDAR system, provided an excellent test database for both the program 
developments and testing. 
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4. RESULTS 

To support the initial algorithmic research, data were provided by industrial partners; 
in particular, Woolpert LLC made available useful datasets. Later the new LiDAR 
system of the Aerial Engineering Office became the sole source of test data. The 
following three datasets were used: 

Toronto, CA, ODOT LiDAR system acceptance test flight, February 19, 2004. 

Ashtabula, OH, I-90 corridor mapping survey, November 16, 2004. 

Madison County, OH, calibration range dedicated test flight, Dec 4, 2004. 

The data from these flights were primarily used for algorithmic tuning and software 
developments. The OSU developed program, called I_FLOW, represents the ultimate 
end result of the project. I_FLOW is able to input standard LiDAR data files in the 
standard format as they are output by REALM during normal processing and then 
extracts vehicles from LiDAR data, groups them into main vehicle categories, 
estimates velocity, and outputs a list of extracted vehicles with attribute information 
of time, location, and velocity. The program and detailed description of the results are 
provided in Appendices C and A. Using the imagery simultaneously collected by the 
ODOT DSS camera, a basic feasibility study was performed to assess the fusion of 
the two datasets to improve the quality, in particular, the velocity estimates, of the 
traffic flow extraction. Details are provided in Appendix B. 

5. CONCLUSIONS 

The I_FLOW program provides a complete implementation of all the algorithmic 
research results related to extracting and characterizing vehicles from LiDAR data 
that were developed in the project. The software has performed well all the three 
datasets recently acquired by the new ODOT LiDAR system. In addition, the 
execution time is also acceptable – LiDAR data come as tens of millions of points and 
handling such an amount of data is not an obvious task.  

6. IMPLEMENTATION PLAN 

The I_FLOW program is ready for installation in the OAE. The program description 
and the source code are included in Appendix C. If required, a short training course 
can be provided for ODOT personnel.  

9



Airborne LiDAR: A New Source of Traffic Flow Data 

BIBLIOGRAPHY 

1. Toth, C., Barsi A. and Lovas T.: Vehicle Recognition from LiDAR Data, 
International Archives of Photogrammetry and Remote Sensing, Vol. XXXIV, 
part 3/W13, pp. 163-166, 2004. 

2. Grejner-Brzezinska D. and Toth C., 2003. Deriving Vehicle Topology and 
Attribute Information over Transportation Corridors from LIDAR Data, ION 
Annual Meeting, Albuquerque, NM, June 22-24, 2003. 

3. Toth C., Grejner-Brzezinska D. and Lovas T.: Traffic Flow Estimates from 
LiDAR Data, Proc. ASPRS Annual Conference, May 5-9, pp. 203-212, CD ROM, 
2003.

4. Toth, C., 2002. Airborne LIDAR Systems: Supporting Traffic Flow Estimates, 3rd

International LIDAR Workshop, October 7-9, Columbus, Web. 

10



Airborne LiDAR: A New Source of Traffic Flow Data 

APPENDIX A 

1. Grejner-Brzezinska, D., Toth, C., Moafipoor, S. and Paska, E. 2004: Precise 
Vehicle Topology and Road Surface Modeling Derived from Airborne LiDAR 
Data, ION GNSS 2004, Long Beach, CA, September 21-24, 2004, CD-ROM. 

2. Toth C, Grejner-Brzezinska D. and Moafipoor, S. 2004: Detecting Moving 
Targets from Airborne LiDAR Data, ION 2004 Annual Meeting, Dayton, OH, 
June 7-9, 2004, CD-ROM 

3. Toth, C. and Grejner-Brzezinska, D., 2004: Vehicle Classification from 
LiDAR Data to Support Traffic Flow Estimates, Proc. of 3rd International 
Symposium on Mobile Mapping Technology, Kunming, China, March 29-31, 
2004, CD-ROM. 

11



Traffic flow parameter estimation and road surface modeling 
from airborne LiDAR data 

Dorota Grejner-Brzezinska1, Charles Toth2, Eva Paska1,2 and Shahram Moafipoor1,2

National Consortium for Remote Sensing in Transportation – Flows (NCRST-F) 
The Ohio State University 

1 Geodetic and Geoinformation Science
470 Hitchcock Hall, 2070 Neil Avenue 

Columbus, Ohio 43210 
Tel: 641-292-8787; Fax: 614-292-2957 

2 Center for Mapping  
1216 Kinnear Road, Columbus, OH 43212 

e-mail: dbrzezinska@osu.edu

BIOGRAPHY 

Dr. Dorota Brzezinska is an Associate 
Professor in Geodetic and Geoinformation 
Science, The Ohio State University (OSU).  
Prior to that, she was a Research Specialist 
at the OSU Center for Mapping. She 
received an MS in Surveying and Land 
Management from the Agricultural and 
Technical University of Olsztyn, Poland, and 
an MS and a Ph.D. in Geodesy from OSU. 
Her research interests cover precise 
kinematic positioning with GPS, precision 
orbit determination for GPS/LEO, GPS/INS 
integration, mobile mapping technology, and 
robust estimation techniques. Between 
1990-1995 she was a Fulbright Fellow at 
OSU. She is the 2003-2005 Land 
Representative for the ION Council, chair of 
IAG Sub-Commission 4.1, Multi-sensor
Systems, a co-chair of the IAG Study Group 
4.1, Pseudolite Applications in Positioning 
and Navigation, and a chair of the Task 
Force 5.3.1, Mobile Mapping Systems of 
FIG WG 5.3. 

Dr. Charles Toth is a Senior Research 
Scientist at the Ohio State University Center 
for Mapping. He received an MS in Electrical 
Engineering and a Ph.D. in Electrical 
Engineering and Geoinformation Sciences 
from the Technical University of Budapest, 
Hungary. His research expertise covers 
broad areas of 2D/3D signal processing, 
spatial information systems, high-resolution 
imaging, surface extraction, modeling, 

integratiion and calibration of multi-sensor 
systems, multi-sensor geospatial data 
acquisition systems, and mobile mapping 
technology. He is Chairing ISPRS WG I/2 on 
LiDAR and InSAR Systems and serves as 
the Director for the Photogrammetric 
Application Division of ASPRS. 

Eva Paska graduated in June of 2001 from 
the Department of Surveying and 
Geoinformatics, Budapest University of 
Technology and Economics, Hungary, with 
an MS in Surveying and Geoinformatics 
Engineering. Between 2000 and 2002 she 
worked as an intern at The Ohio State 
University Center for Mapping. Since July 
2002 she has been a graduate student at 
The Ohio State University, Department of 
Civil and Environmental Engineering and 
Geodetic Science. Her research interests 
cover image processing, LiDAR data 
processing/segmentation, and estimation 
techniques. 

Mr. Shahram Moafipoor is a PhD student in 
the Department of Geodetics Science, The 
Tehran University, and currently he is a 
visiting scholar in the Department of Civil 
and Environmental Engineering and 
Geodetic Science, The Ohio State 
University. Prior to that, he was a researcher 
at National Cartography Center NCC, Iran. 
He obtained an MS degree in 
photogrammetry from Tehran University in 
Tehran, Iran in 1998 and B.Sc in surveying 
from Tehran University in Tehran, Iran in 

12



1993. His research interests include 
navigation systems, aerial photography, and 
digital photogrammetry. 

ABSTRACT 

The National Consortium for Remote 
Sensing in Transportation-Flows (NCRST-
F), led by The Ohio State University, and 
sponsored by the U.S. Department of 
Transportation and NASA, was established 
in 2001. Our partners in NCRST-F are the 
University of Arizona and George Mason 
University. The major focus of the OSU 
research team is to improve the efficiency of 
the transportation system by the integration 
of remotely sensed data with the traditional 
ground data to monitor and manage traffic 
flows. Our research team is concerned with 
the vehicle extraction and traffic pattern 
modeling based on airborne digital data, 
collected by frame cameras and LiDAR 
systems (Light Detection and Ranging). This 
paper is an extension of our earlier 
publications, where theoretical and practical 
studies on the feasibility of using LiDAR data 
and airborne imagery collected over the 
transportation corridors for estimation of 
traffic flow parameters were presented. In 
this contribution the actual example of traffic 
flow estimation obtained from high-accuracy 
data set, collected in February 2004 in 
Toronto, Canada is presented.  In particular, 
vehicle extraction, classification into major 
categories, and velocity estimation, as a 
primary parameter describing the traffic flow, 
are discussed and analyzed. 

The updated algorithms and methodology of 
extracting vehicle information together with 
the road surface modeling with LiDAR, 
precisely georeferenced by GPS/INS 
sensors, and augmented by LiDAR intensity 
information, are discussed. We demonstrate 
that our algorithms are fast and efficient and 
are capable of autonomous traffic flow 
information extraction. It is shown, however, 
that for better accuracy and reliability, a 
fusion of LiDAR with frame image data is 
desirable. Nonetheless, based on the high 
spatial density LiDAR data, we demonstrate 
that vehicle extraction and their coarse 
classification as well as estimation of flow 
can be efficiently performed in parallel to the 

efficient and automated road surface 
extraction and modeling.  

1. INTRODUCTION 

In recent years, remote sensing has made 
remarkable technological progress and has 
significantly expanded its application fields 
reaching science and engineering 
disciplines, formerly served exclusively by 
traditional tracking, positioning and mapping 
technologies. One of the examples is the 
traffic flow monitoring with airborne remote 
sensing methods, which in the past few 
years has been a major research focus of 
the National Consortium for Remote 
Sensing in Transportation-Flows (NCRST-
F), led by The Ohio State University. Rapid 
technological advances that broadened the 
range of remote sensing applications 
stimulated the research community to reach 
beyond conventional uses of remote 
sensing, leading to the establishment of 
NCRST-F.  

Transportation represents a major segment 
of the world’s economy, and as such must 
be carefully monitored and planned, which 
require the most up-to-date, accurate and 
continuous methods of screening, mapping 
modeling and managing. 

One of the important traffic measures is the 
ratio representing the number of vehicles 
per population sample. For example, there 
are more than 100 vehicles for every 100 
people in the United States; the rate is about 
50 and 25 in Western and Eastern Europe, 
respectively. On average (i.e., worldwide) 
the development of the transportation 
infrastructure, does not keep up with the 
growth of the number of vehicles and 
passenger-miles traveled, which 
emphasizes the necessity for better 
monitoring and more efficient traffic 
management methods. This, ultimately, 
requires better, faster, more reliable and 
continuous traffic data, which can by 
acquired with newer, better sensors and 
modern remote sensing techniques. Finally, 
only efficient traffic flow monitoring, 
supported by state-of-the-art technology and 
modeling methods may lead to effective, 
real-time traffic management. 
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To meet the demanding requirements of 
traffic flow monitoring and transportation 
management, the Consortium adopted the 
primary goals of improving the efficiency of 
the transportation system by integrating 
remotely sensed traffic flow data obtained 
from airborne and/or satellite platforms with 
traditional data collected on the ground.  

Effective traffic monitoring and management 
require intelligent data acquisition and fusion 
from different sensors and platforms. The 
traditional technologies of traffic flow 
sensing, including inductive loop detectors, 
video cameras, roadside beacons, and 
travel probes, are based on fixed locations 
in the transportation network, and thus may 
not provide sufficient spatial and temporal 
resolutions. Although these detectors 
provide useful information locally, they 
generally do not provide sufficient coverage 
for traffic flows over larger areas. Airborne 
and spaceborne remote sensing technology, 
however, can provide data in large spatial 
extent with varying temporal and spatial 
resolutions. The primary objective of this 
research effort is the flow extraction from 
airborne platform data, while other members 
of NCRST-F use information generated by 
spaceborne platforms and sensors. 

As part of the NCRST-F research effort, we 
conducted extensive investigations on using 
airborne LiDAR and digital imagery as a 
source of traffic flow data. Our initial studies 
supported by experimental tests confirmed 
that using LiDAR data and/or aerial imagery 
for the traffic flow estimation is feasible (see 
reference list for more details on the 
algorithms). This paper describes our 
currently used method of vehicle detection, 
extraction and tracking from both imagery 
and LiDAR, which forms the basis for traffic 
flow parameter estimation, including vehicle 
count, classification and vehicle velocity 
estimates. Vehicle extraction and 
classification are the basis of the vehicle 
density evaluation. Average vehicle density 
and speed, as well as traffic flow are the 
main parameters describing a traffic stream. 
In other words, the density is the number of 
vehicles traveling a predefined length of the 
road, while traffic flow represents the 
amount of vehicles traveling over a road 
segment in a given time period. Thus, speed 

multiplied by the density provides the traffic 
flow estimate. 

This paper is the continuation of research 
presented earlier (Grejner-Brzezinska and 
Toth, 2002 and 2003a-b; Toth et al, 2003 a-
b); new examples of traffic flow estimation 
together with its accuracy assessment are 
presented. The analyses are based on the 
high-density (2-4 points/m2) LiDAR data 
collected on February 19, 2004 over the 
downtown Toronto area with the Optech 
ALTM 30/70 LiDAR system.  The work 
presented in this paper is currently 
sponsored by the Ohio Department of 
Transportation (ODOT). 

2. THE CONCEPT 

The motivation for using LiDAR as a new 
source of traffic data follows from the 
success, measured in performance, of this 
technology in civilian mapping. In less than 
five years, LiDAR technology, illustrated in 
Figure 1, became the main source of 
surface information in topographic mapping. 
Although aimed at acquiring only surface 
points, the latest high-performance LiDAR 
systems can deliver very dense and 
accurate point clouds, and thus provide data 
for more sophisticated applications, such as 
object extraction, including traffic flow data 
collection over the transportation corridors. 
Recent advances in LiDAR technology, such 
as the availability of the intensity data of the 
reflected laser pulse, the increased number 
of recorded returns from a single laser beam 
(4 to 5), and the laser repetition rate 
approaching 100 kHz, support the 
expansion of the technology from simple 
surface extraction to more demanding 
feature extraction applications. 

The primary advantages of LiDAR as an 
efficient and accurate mapping tool are: (1) 
the sensor is virtually independent on 
weather/cloud coverage and day/night 
conditions, (2) continuous (near continuous) 
data stream, (3) fast and accurate 
measurement of the road surface and 
structure that mainly depends on the quality 
of the direct georeferencing based on 
GPS/INS integration. The primary 
disadvantages are: (1) no object information 
and no texture since are available as LiDAR 
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data come in the form of a point cloud with 
X, Y, and Z spatial coordinates (this, 
however, changes as intensity information 
becomes available), (2) geometric 
distortions – shortening/elongation of 
moving objects (due to scanning), (3) limited 
spatial resolution – may change as pulse 
rate is increasing, and (4) high cost. It 
should be mentioned, however, that 
disadvantage (2) is effectively used in our 
research, as the velocity estimation is based 
on the vehicle elongation/contraction 
information, as explained in the sequel. It 
should be emphasized that the ultimate 
accuracy of LiDAR data is defined not only 
by the sensor quality, but primarily by the 
accuracy of the direct sensor orientation 
provided by GPS/INS, and the inter-sensor 
calibration of the GPS/INS/LiDAR system. 

The price of LiDAR technology is still 
prohibitive for dedicated missions supporting 
only traffic monitoring. However, LiDAR data 
collected for routine infrastructure and 
topographic mapping applications over the 
transportation corridors can easily provide 
traffic flow information. For example, in order 
to determine the road surface and/or road 
infrastructure, the vehicles becomes 
obstacles that need to be removed. This 
information should not be discarded, 
however, but rather it should be directly 
converted to the traffic flow data. Collecting 
data over the transportation corridors during 
regular surveys offers a unique opportunity 
to obtain important data for transportation 
planners and managers at no additional 
cost. Data can be acquired also in transit 
while the system is flown between various 
mapping jobs.  

Figure 1. LiDAR data collection concept.

Figure 2 illustrates the workflow for the 
traffic flow extraction from LiDAR data. The 
primary tasks are: (1) input data pre-
processing, (2) road surface extraction, (3) 
vehicle modeling, and (4) traffic flow 
estimation. The main steps needed for the 
velocity estimations, after the road surface 
was extracted and separated from the 
vehicles (see, Toth et al., 2004) are (1) 
vehicle extraction, (2) primary 
parameterization of the vehicle’s shape – 
vehicle modeling, (3) feature space selection 
– parameter optimization, and (4) vehicle 
classification. The next step in the semi-
automated process, illustrated in Figure 2, is 
the vehicle velocity estimation followed by 
the traffic flow data computation, and finally, 
the accuracy assessment. The details of the 
road surface and vehicle extraction process 
can be found in (Toth et al., 2004, 2003a-b; 
Grejner-Brzezinska and Toth, 2003a-b), and 
only an outline of the major processing steps 
is presented here for completeness. 

Figure 2. Data processing architecture. 

The major steps of the road extraction 
process from LiDAR data are presented in 
Figure 3. The algorithms require the 
availability of the approximated spatial 
location of the road centerline (e.g., from a 
CAD/GIS database), to initiate the road 
extraction process. The results presented 
here are based on the analysis of the 3D 
LiDAR point cloud; however, an extension of 
our algorithms is currently pursued towards 
the inclusion of LiDAR intensity data.  

The two principal algorithms of the road 
surface extraction are: (1) segmentation of 
LiDAR data to select flat surfaces (equation 
1), and (2) analyzing LiDAR scan lines to 
locate straight line segments using the auto-
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structure function (ASF) analysis (see Toth 
et al., 2004 for more details).  

Figure 3. The road boundary extraction 
process (Toth et al., 2004) 

The analysis of the normal vector, 
),,( CBAn  selects the surface patches 

flagged as possible planar road segments, 
described by equation (1).  

0DCZBYAX     (1) 

In a typical corridor mapping LiDAR mission, 
the scan lines correspond to the road cross 
profiles, offering wealth of information for the 
road surface detection process. The basic 
concept is to identify planar areas defined by 
the scan lines, which correspond to the road 
surface. There are several techniques of 
measuring the roughness and roughness 
length of a profile, such as auto-covariance, 
cross-correlation, variogram, texture 
analysis and the fractal method (Thomas, 
1999). The correlation among the points 
along a profile, as a random variable, is 
selected in this paper, and the auto-
covariance function or its modified equation, 
called structure function, is used in our 
investigation. For a profile of the length L,
the structure function is defined as: 

L
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where, z(x) and )(xz  are two elevations 
along the cross-profile, separated by a 
distance . This function is often 

normalized as the auto-structure function, 
called ASF: 
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S
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The ASF function can be extended to 
determine 2D surface patches, but at the 
price of the increased computation 
requirements. The vehicles are natural 
obstacles for the ASF method when 
searching for flat surfaces on the road. 
Thus, close monitoring of the “affected” lines 
is needed, which naturally supports the 
vehicle extraction step. 

(a)

(b)

Figure 4. Road surface extraction based on 
intensity segmentation; (a) optical image 
(b) LiDAR intensity image.

The new generation of the LiDAR systems 
provides intensity data, which can be used 
as an additional source of information for the 
road extraction algorithm (see Figure 5 for 
the comparison of LiDAR intensity data with 
digital imagery). Although the intensity 
information is relative by nature, it can 
provide accurate local segmentation of the 
LiDAR data. For example, the road surface 
and vegetation along the road exhibit very 
different signal responses; thus, 
segmentation can be based on the relative 
intensity value. Figure 4 illustrates sample 
data segmented by a 15-35% intensity 
threshold value, showing a very good 
performance in extracting the road 
pavement and delineating the road 

LiDAR Data 

Elevation Intensity 

Combining Areas 

Rolling Technique 
Filtering/Cleaning

Detection of the Left/ Right 
Road Edges and Medians 

Centerline
GIS / Cad 
Database

SegmentationASF
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boundaries, road lanes, and the vehicles 
(which can be visually inspected by using 
the corresponding image data).

Once the road surface areas have been 
approximated from the elevation data and 
intensity (if available), a final consistency 
check using object space constraints should 
take place to determine and delineate the 
road. In this step a simple method called 
“rolling technique,” based on signal auto-
correlation is used. In essence, it 
corresponds to rolling a bar, parallel to the 
road direction, from the center of the road 
towards the edges; the rolling should stop at 
the road edges (zero slope), delineating the 
road boundaries. 

The feasibility analysis of extracting vehicles 
and classifying them into main groups, such 
as passenger cars, multipurpose vehicles, 
and trucks, as well as all respective 
algorithms that we developed for these tasks 

are presented in (Grejner-Brzezinska and 
Toth, 2003a-b; Toth et al., 2003a-b). In this 
paper the focus is primarily on the vehicle 
velocity estimation and its accuracy 
assessment. 

3. TEST DATA, SENSOR PARAMETERS 

The examples discussed in this paper are 
based on a high-density (2-4 points/m2)
LiDAR data set collected on February 19, 
2004, over the downtown Toronto with the 
Optech ALTM 30/70 LiDAR system, 
simultaneously acquired with the 4K by 4K 
images (DDS digital camera system). Figure 
5 shows an example of the LiDAR data, 
including elevation and intensity 
components, and the orthorectified RGB 
imagery for a selected segment of a 
freeway. The imaging sensors were 
equipped with the Applanix POS AV 510 
integrated DGPS/IMU system. 

(a)

(b)

(c) 

Figure 5. (a) LiDAR elevation data, (b) LiDAR intensity data, and (c) 4K by 4K digital camera 
ortho image of a freeway segment in downtown Toronto.
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In general, laser sensors installed in the 
aircraft or helicopter can deliver range data 
at the cm-level accuracy. To obtain surface 
points with a comparable accuracy, 
however, the use of high-performance 
GPS/INS-based direct orientation system is 
mandatory. In addition, the scan angle of the 
rotating mirror needs to be known with high 
accuracy (new encoders can provide 
accuracy better than 1/1000 of the angle), 
where scan half-angle, , is defined as an 
angle between the zenith and the outermost 
beams in the scan, as shown in Figure 1. 

The error sources in the point determination 
from images and LiDAR measurements, in 
terms of the object space positioning 
accuracy, can be categorized into four main 
groups: (1) sensor platform position and 
attitude errors (navigation solution) – 
dominant part, as mentioned earlier, (2) 
inter-sensor calibration errors (boresight 
misalignment between the IMU and the 
sensor frames – angular errors), (3) sensor 
calibration errors, (4) miscellaneous errors, 
and (5) atmospheric effects. 

XYZ 
[m]

[arc
sec]

-b
[arc 
sec]

b
[°]

RMSX 
[m]

RMS 
Y[m] 

RMS 
Z[m] 

0 0.073 0.073 0.051 
0.05 10 10 

10 0.128 0.074 0.055 

0 0.134 0.134 0.100 
0.10 20 20 

10 0.170 0.135 0.103 

0 0.313 0.313 0.300 
0.20 30 30 

10 0.330 0.313 0.301 

Table 1. Ground coordinate accuracies of 
LiDAR data with different navigation 
scenarios.

The coordinate accuracies achievable with 
state-of-the-art LiDAR systems at 600 m 
flying height are listed in Table 1 for different 
navigation performance levels (positioning, 

XYZ, attitude, , and boresight angle, 

-b, accuracies), and for two different scan 
angles (0 and 10 degrees). The coordinate 
accuracy was assessed by error 
propagation based on the basic LiDAR 
equation (4).

)(,, INSL
INS
L

M
INSINSMkM brRRrr (4) 

Where 

kMr ,
3D coordinates of point k 
in the mapping frame 

INSMr ,
3D INS coordinates in 
the mapping frame 

M
INSR

rotation matrix between 
the INS frame and 
mapping frame, 
measured by GPS/INS 

INS
LR

boresight matrix 
between the laser frame 
and INS frame  

Lr
3D object coordinates in 
laser frame 

INSb boresight offset 
component 

For an easy comparison, the accuracy 
specifications for the two widely used 
GPS/INS systems, available commercially, 
POS AV 310 and 510, are presented in 
Table 2. According to the Applanix 
specification, the accuracy levels of the POS 
AV 510 direct georeferencing system in 
post-processing are 5 - 30 cm for the 
position; ~20 arc sec for roll and pitch; and 
~30 arc sec for heading angle; see 
(http://www.applanix.com/html/products/prod
_av_tech.html).

POS System AV/DG 310 AV/DG 510 
Absolute accuracy (Post processed) 
    Position [m] 0.05-0.30 0.05-0.30 
    Velocity [m/s] 0.0075 0.005 
    Roll, Pitch 
[deg] 0.013 0.005 

    Heading [deg] 0.035 0.008 
Relative accuracy 
   Noise 
[deg/sqrt(hr)]

0.15 0.02 

   Drift [deg/hr] 0.5 0.1 

Table 2. Specifications for POS AV 310 and 
510 systems. 

In our test flight, the GPS data were 
processed by the POSPac/POSGPS version 
4.02. Table 3 lists the details of the GPS 
data quality and processing parameters. 
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Parameter Magnitude 

PDOP
Average = 1.9 

Max = 2.7 
Min = 1.3

Number of 
satellites

Average = 6 
Max = 7 
Min = 5

Baseline
Average = 11.8 km 

Max = 27.3 km 
Min = 0.1 km 

Position standard 
deviation percentages

100.0 % between 
0.00 - 0.10 m for 
East, North, Height

Estimate of average 
standard deviation

East: 0.02 m 
North: 0.025 m 
Height: 0.045 m

Fwd/Rev separation 
RMS Values 

East: 0.013 m 
North: 0.024 m 
Height: 0.033 m 

Table 3. GPS data quality and processing 
parameters. 

4. VEHICLE VELOCITY ESTIMATION

In this section, the estimation of the vehicle 
velocity is discussed. Velocity, as already 
explained, is necessary for the traffic flow 
calculation, since the traffic flow is a product 
of the average vehicle velocity and the 
average vehicle density. Vehicle speed 
estimation from LiDAR is based on the 
vehicle elongation and shortening of the 
moving objects that are the effects of the 
scanning mode of the data acquisition.  

Due to the continuous scanning nature of 
the LiDAR sensor and the motion of both the 
sensor and the vehicles, the length of the 
vehicles appears distorted in the LiDAR data 
set. In other words, the relative motion 
between the LiDAR sensor and the moving 
targets results in an elongated or shortened 
length of the vehicles. The cars are 
measured longer if they move in the same 
direction as LiDAR and shorter, if they move 
in the opposite direction. Exploiting the 
relationship between the LiDAR-measured 
and the actual lengths of the vehicles and 
the velocity of the sensor, the vehicle 
velocity can be expressed with the following 
formula (equation 5): 

LiDARagainstvel

LiDARalongvel

V
m

ms
V

V
m

sm
V

_

_

 (5) 

where Vvel_along / Vvel_against is the velocity of 
vehicle traveling along/against the LiDAR 
flying direction, VLiDAR is the velocity of the 
LiDAR platform, m is the LiDAR-sensed 
vehicle length, and s is the true length of the 
vehicle. The LiDAR platform’s speed is 
known with high accuracy, but the actual 
vehicle size is unknown. Moreover, the 
measured vehicle length from the LiDAR 
data may not be very accurate due to the 
errors in the vehicle representation: (1) the 
LiDAR pulse footprint size is not negligible, 
thus, the accuracy of the actual edge of the 
vehicle footprint determination depends on 
the size of the LiDAR footprint, (2) LIDAR 
point density; the distance between the 
points on the ground (object) limits the 
accurate length estimation, and (3) the 
shadow effect, which does not influence the 
length parameter estimation directly, but it 
makes the vehicle orientation more 
ambiguous and the width parameter 
estimation less accurate. For examples 
illustrating these problems see Figure 6 
below.   

(a)

(b)

Figure 6. Limitations in accurate 
parameterization of LiDAR-sensed 
vehicles, (a) data density and footprint 
size, (b) shadow effect. 

Our earlier study confirmed that all types of 
vehicles can be approximately classified into 
three main categories, for example: 
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passenger cars, multi-purpose cars, and 
trucks, and thus the actual vehicle length 
can be estimated as the average length 
within a category. Based on the statistics of 
the US vehicle market according to a study 
by Ramprakash (2003), the true length of, 
for example, passenger cars is between 
4.36 and 5.23 m. These values are used in 
the example below.  

Parameters
VLiDAR = 55 m/s 

VVEH MIN   = 20 m/s                s MIN = 4.36 m 
VVEH MAX = 32 m/s                s MAX = 5.23 m 

LiDAR-sensed length 
[m] True

length
Vehicle
velocity 

Along Against 
s MIN VVEH MIN 6.85 3.19 
s MIN VVEH MAX 10.42 2.75
s MAX VVEH MIN 8.21 3.83
s MAX VVEH MAX 12.50 3.30 

Table 4. LiDAR-sensed lengths of 
passenger cars traveling on a freeway. 

Some representative values of the 
elongated and shortened lengths of 
passenger cars that are sensed at typical 
sensor and vehicle relative speeds are 
shown in Table 4. The aircraft (LiDAR) 
speed was 55 m/s, and the car velocity 
ranges between the minimum and the 
maximum freeway speeds. In this scenario, 
the LiDAR-sensed length of the passenger 
cars moving in the flying direction falls 
between 6 and 13 meters, and 2.5 and 4 
meters for the cars that move against the 
flying direction.  

Table 5 shows the representative numbers 
for the velocity error at different LiDAR-
sensed vehicle lengths. The vehicle velocity 
error is derived from the velocity range 
calculated from the statistical sample of the 
actual length. In other words, the velocity 
error is the difference between the velocities 
estimated for the average, the smallest and 
the highest vehicle length within the 
category. The vehicle measured lengths 
listed in Table 4 were used to estimate the 
values listed in Table 5. The velocity error 
can be minimized if the velocity calculation 
is based on the average true vehicle length 
in the category. 

Parameters
VLiDAR = 55 m/s
Statistical true Length [m]:     
Min = 4.36; Max = 5.23; Average = 4.78

LiDAR-
sensed 
Length

[m]

Estimated Velocity 
[m/s] calculated from 

Min Max and 
Average statistical 

true length  

Velocity
Error
[m/s] 

 Min Max Ave  
3 24.93 40.88 32.91 7.97 
7 21.76 13.90 17.33 3.93 
10 31.02 26.23 28.63 2.40 
15 39.01 35.82 37.41 1.60 

Table 5. Errors in speed estimation due to 
the uncertainty in the true length size. 

Figure 7 illustrates the vehicle velocity 
accuracy as a function of the LiDAR-sensed 
length. The estimation accuracy is rapidly 
decreasing due to the uncertainty in the true 
size, as the LiDAR-sensed length is getting 
shorter. 

In summary, it can be concluded that the 
accuracy of the velocity estimation is better 
for vehicles traveling along the direction of 
the sensor motion, as their LiDAR-sensed 
measure is relatively long. Also, the 
uncertainty in the true vehicle length has 
less impact when the LiDAR-sensed length 
is longer. In a similar way, if the car is 
traveling in the direction opposite to LiDAR, 
its velocity estimate would be more accurate 
for lower speeds, since the shortening effect 
will be less severe.  

Figure 7. Velocity estimation accuracy as a 
function of LiDAR-sensed vehicle 
length.
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To overcome the errors in the true vehicle 
length estimation due to generalization or 
possible misclassifications, the actual 
lengths of the vehicles should be determined 
from other sensory data, such as imagery 
collected simultaneously with the LiDAR 
point clouds. A single image does not 
provide the absolute size information, but 
the image sequence formation preserves the 
relative object size information. Although an 
extra effort, such as, using adequate 
matching technique is required to identify 
the same vehicles in the two data sets, the 
combination of the two data sets could 
eventually lead to the improved velocity 
estimation of the moving targets.  

Figure 8 presents the vehicles extracted 
from the LiDAR data and overlaid on the 
orthoimage. LiDAR vehicle points are 
represented with green and red point clouds, 
corresponding to the motion along or against 
the flying direction, respectively. For 
referencing, some static objects, such as 
one point on the centerline and points at the 
guard rail are also marked in the figure. The 
matches of the corresponding vehicles in the 

two data sets are highlighted by rectangles 
with identical colors. Due to the different 
nature of the two data acquisition 
techniques, continuous scanning mode of 
the LiDAR sensor and instantaneous 
capturing of the imagery, the geo-locations 
and also the shapes of the corresponding 
vehicles differ in the two data sets. The 
approximate location of the LiDAR beam 
when the image was taken is marked by a 
triangle in Figure 8. Note that the LiDAR 
point clouds of the vehicles fall in front of the 
corresponding vehicles on the left side of the 
blue dotted line, and behind the 
corresponding vehicles on the right side of 
the line, as the LiDAR measured the vehicle 
either before or after the image was taken. 
Notice that the vehicles move in both 
directions. The positions of the matched 
vehicles can be estimated from both data 
sets, as the distance between the two 
locations can be computed from the time 
difference of the acquisitions (the LiDAR 
data come with GPS time tags and the 
camera exposure is known) and the average 
vehicle velocity. 

       (a) 

          
                                           (b)                                         (c) 

Figure 8. Vehicles extracted from the LiDAR data and overlaid on the orthoimage. Match of 
corresponding vehicles in the two data sets is marked with identical colors (a). Also shown 
are vehicle elongation (b) and vehicle shortening (c). 
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5. CONCLUSION

Estimating the velocity from LiDAR data 
based on extracted and broadly categorized 
vehicles produces moderate results. The 
speed of the larger vehicles can be fairly 
well approximated, but for smaller vehicles, 
especially these moving in the direction 
opposite to the LiDAR motion, the errors 
could become very significant. Thus, 
combining LiDAR with complementary 
sensor data, such as simultaneously 
collected imagery, can provide a good base 
for velocity estimation, which combined with 
the velocity extraction and categorization 
that provide the densities, will allow more 
reliable traffic flow parameter estimation.  
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ABSTRACT 

This paper represents the continuation of research 
presented earlier (Grejner-Brzezinska and Toth, 
2002 and 2003a-b; Toth et al, 2003 a-b) referred 
to a theoretical and practical study on the 
feasibility of using LiDAR (Light Detection and 
Ranging) data and airborne imagery collected 
simultaneously over the transportation corridors 
for obtaining traffic flow estimates, such as (1) 
vehicle count estimates based on extracting 
vehicles from dense LiDAR point cloud and/or 
imagery, (2) classification of extracted vehicles 
into main categories, (3) velocity estimates based 
on modeling the vehicle categories and using 
sensor navigation data, and (4) intersection 
movement patterns.  

In this paper, we present the updated algorithms 
and methodology of extracting the vehicle 
information together with the road surface 
modeling with precisely georeferenced (GPS/INS) 
LiDAR data, augmented by LiDAR intensity 
information. We demonstrate that intelligent 
algorithms that we developed are capable of fast 
and robust identification of the shapes (especially 
the vertical profiles of the vehicles), proving 
LiDAR’s ability to preserve the vehicle geometry 
better, as compared to conventional image 
projection (again, primarily the vertical profile), 
where it can be significantly distorted. We prove 
that if LIDAR data of sufficient spatial density are 
available, vehicle extraction and their coarse 
classification can be efficiently performed in 
parallel to the efficient and automated road 
surface extraction and modeling.  
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1. INTRODUCTION 

Federal and local government transportation 
management services monitor and control the 
traffic over the urban road network and the 
nation’s highway system. These agencies collect 
data for both long-term planning and real-time 
traffic control. Real time information is usually 
gathered from many diverse sources, such as 
electronic sensors in the pavement (loop 
detectors), road tubes, ramp meter sensors, and 
video and digital cameras, which are sent to the 
traffic management center at various times. Most 
of this information is only recorded; a small part of 
it is analyzed in real-time and used for immediate 
traffic control and decision making. Commonly, the 
density and flow of traffic are the two main 
parameters for describing the traffic stream. In 
simple terms, the density is the number of vehicles 
occupying a road lane per unit length at a given 
time, while traffic flow represents the amount of 
vehicles traveling over a road segment in a given 
time period. 

With the increasing number of vehicles entering 
the current transportation network annually, the 
importance of effective traffic management is 
becoming more crucial, because the construction 
of new roads is not keeping up with the volume of 
growing traffic. The key to better traffic 
management, however, is the access to better 
data and, of course, the capability for immediate 
processing of the data to provide a real-time 
response. Therefore, interest in new sensors that 
can provide large volumes of data in real-time is 
steadily growing. Airborne and spaceborne remote 
sensing technology can provide data in large 
spatial extent with varying temporal resolution. 
One of the distinctive characteristics of using 
remote sensing is that it can be deployed more or 
less anytime and anywhere – a definite advantage 
over the spatially local sensors. The installation 
and use of ground-based sensors disrupts traffic 
and endangers the crews. 

LiDAR has become the primary surface extraction 
technology in mapping in the last five years. Its 
success is mainly due to the high-level of 
automation offered – the data can be literally used 
as acquired; the need for interactive processing is 
usually very limited. Mapping of the transportation 
infrastructure is primarily concerned with the static 
part of the object space. Vehicles, in particular the 
moving ones, pose a difficulty for processing: 
these objects should be removed during the 
processing. Instead of throwing away the removed 

objects, it could be advantageous to use these 
data to derive valuable information for traffic 
monitoring and management. An earlier research 
investigated the feasibility of extracting vehicles 
and classifying them into main groups, see 
(Grejner-Brzezinska et. al, 2003 and 2004; Toth et 
al, 2003b; Toth and Grejner-Brzezinska, 2004). 
Based on the success of the initial study, the 
decision was made to further investigate the 
approach and to develop a prototype of the 
concept. This paper reports additional research 
components not addressed in the initial phase.

2. SYSTEM DESIGN 

The processing architecture of the system 
automatically extracting traffic flow from LiDAR 
data is shown in Fig. 1. The main processing steps 
are: (1) road surface extraction, (2) vehicle 
extraction, (3) primary parameterization of the 
vehicle shape – vehicle modeling, (4) feature 
space selection – parameter optimization, (5) 
vehicle classification, (6) vehicle velocity 
estimates, and (7) traffic flow data computation. 
The initial feasibility research on extracting flow 
data from LiDAR was focused on tasks (3-5). In 
this paper, the other tasks, which are the subject 
of ongoing research, are discussed. Section 3 is 
concerned with the road surface extraction. The 
primary objective is to determine the road 
boundaries while the complete surface modeling is 
omitted. Vehicle extraction is based on the 
availability of the road footprint and is discussed in 
Section 4. The aspects of vehicle velocity 
estimates are introduced in Section 5. Using an 
actual data set from a conventional LiDAR survey, 
traffic flow results are derived and discussed in 
Section 6. Finally, the conclusion and remarks are 
presented. 

3. ROAD OUTLINE EXTRACTION 

At a small scale roads are considered as linear 
features, while in large scale they are typically 
characterized by centerline and width parameters 
in 2D or by additional slope parameter in 3D. 
Furthermore, road details such as edge lines, 
median, fences, concrete dividers, shoulder lines, 
traffic signs, etc, are available at engineering scale 
mapping. The actual pavement surface is rarely 
modeled as the description using linear features is 
generally satisfactory. 
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Figure 1. Data processing architecture 

Methods for road extraction from remote sensed 
data are available and typically focused on linear 
feature extraction from satellite or airborne 
imagery. Extracting roads from LiDAR is a rather 
new approach (Hu and Tao, 2004). In both cases, 
however, the identification and coarse delineation 
of the road is the objective and no consideration is 
given to pavement level modeling. Also, these 
techniques are based on a general approach of 
not assuming the availability of any road data, 
such as a GIS or CAD database. In reality, this 
type of data is always available for the developed 
part of the world. Therefore, the road outline 
extraction process should be facilitated by using 
such data, which, in turn, changes the objective 
from finding roads in LiDAR data to realigning the 
road description based on the new measurement.  

In our concept, the road outline and surface 
extraction, shown in Fig 2, assume the availability 
of coarse road data; at a minimum centerline 
information is needed (e.g.,. from a GIS 
database). Then the LiDAR point cloud, 3D points, 

and, depending on availability, LiDAR intensity 
form the input data. The use of intensity data is 
still in its infancy, but new systems already offer 
this capability and therefore are considered here. 
Approximated road areas/corridors can be 
separately analyzed based on both data sets and 
then results can be combined. 

Figure 2. The road boundary extraction process 

The strength of LiDAR data comes from the true 
3D description of the object space, which offers a 
better object characterization and results in a 
better feature extraction performance. For our 
situation, corridor mapping, there are two apparent 
approaches: (1) segmentation of LiDAR data to 
find flat surfaces, and (2) analyzing LiDAR 
scanlines to find straight line segments. In the first 
case, points are grouped and small surface 
patches are fit to them, which are described by a 
plane representation, see Eq. 1. 

0=+++ DCZBYAX     (1) 

Analyzing the normal vector, ),,( CBAn =!  the 
patches can be marked as possible road 
segments. Depending on the quality of the 
GIS/CAD road data, the road slope information 
should be used during the processing. If only 
horizontal data are available, the normal vector 
should be split into two components, along the 
road and across the road. The across the road 
component, which should describe a nearly 
horizontal surface, should be given higher weight 
in the segmentation. The along the road 
components can fluctuate more, but the rate of 
change should be consistent. This approach works 
well but is rather computation expensive.  

LiDAR Data 

Elevation Intensity

Combining Areas 

Rolling Technique 
Filtering/Cleaning 

Detection of the Left/ Right 
Road Edges and Medians 

Centerline 
GIS / Cad 
Database

SegmentationASF Analysis

Input LiDAR data 

Road Area Filtered 

Road Definition 
Data - CAD/GIS 

Road Edge Extraction 
Road Median Extraction 
Road Surface Modeling 

Vehicle Parameterization 

Transformation to 
Feature Space 

Classification  
in Feature Space 

Velocity Estimates Based 
on

Vehicle Category Data 

Vehicle Modeling 
and Parameter 

Analysis

Vehicle Data 
Augmented 
by Vehicle 
Category 

Computation of  
Traffic Flow Data 

Vehicle Extraction 

Intensity 
information 

25



Since roads are usually surveyed with 
perpendicular scanlines in a typical corridor 
mapping LiDAR mission, analyzing the road cross 
profiles as they are measured by consecutive 
scans provides a good alternative for road 
detection (changes in geometry are larger in that 
direction). In fact, this is the reason that roads are 
conventionally modeled by cross profiles. The 
basic concept is finding flat segments of the 
scanlines that correspond to road surfaces. There 
are several techniques for measuring the 
roughness and roughness length of a profile such 
as auto-covariance, cross-correlation, variogram, 
texture analysis and the fractal method (Thomas, 
1999). The correlation between points on a profile, 
as a random variable, is chosen in this paper and 
the auto-covariance function or its modified 
equation called structure function is used in our 
investigation. For a profile of length L, the 
structure function is defined as: 
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where, z(x) and )( τ+xz  are pairs of height 
values separated by a distance τ . This function is 
often normalized as the auto-structure function, 
called ASF: 
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Figure 3 shows a few consecutive profile lines and 
the computed ASF functions. Although the ASF 
computation inherently implements some 
smoothing, a filtering of either the raw data or the 
derived ASF function is recommended, as the 
LiDAR data usually come with noise; typically 5 
cm RMS. 

The ASF function can be extended for surface 
patches (2D), but again at the price of increased 
computation requirements. In our experiences, 
both methods showed good results, as long as the 
roads to be identified had distinct geometry with 
respect to their surroundings. Thus, flat paved 
areas, such as parking lots and pedestrian 
walkways, cannot be reliably distinguished from 
roads. In addition, vehicles obviously cause 
problems, and therefore, the along the road 
pattern of the ASF function should be monitored to 
detect affected lines and they should be removed 
from the processing. If the scanlines are not 
perpendicular to the road centerline direction, 
cross profiles can be computed by interpolation 
before processing. 

Figure 3. The road cross-profiles (top) and the 
computed ASF showing surface roughness 

(bottom). 

As LiDAR intensity data are becoming widely 
available, they can be used as an additional 
source of information for the road extraction. 
Although the intensity information is relative by 
nature, it can provide for accurate local 
segmentation of LiDAR data. For example, the 
road surface and vegetation along the road exhibit 
very different signal response; thus segmentation 
can be based on the relative intensity value. 
Figure 4 depicts sample data segmented by a 
40% intensity threshold value, showing a very 
good performance. Note the road centerline 
points, marked in blue, from the GIS/CAD data. 
The points erroneously segmented can be 
removed by basic morphology processing. 

Figure 4. Road estimation based on intensity 
segmentation 

Once the road surface areas have been 
approximated from elevation and intensity (if 
available) data, a final consistency check using 
object space constraints should take place to 
determine and delineate the road. At this point the 

26



road direction and width are approximately known, 
and the objective is to determine the edge lines of 
the road. As the changes in road geometry are 
limited in the road direction, a similarity analysis is 
performed over smaller road segments, which is 
defined as a distance comparable to the road 
width. This technique is called rolling procedure 
and is based on auto-correlation – basically a 
virtual bar, parallel to the road direction is rolled 
from the center of the road towards the edges, see 
Fig. 5. The rolling of the bar is supposed to stop at 
the road edges, delineating the road boundaries. 

Figure 5. Rolling technique 

The rolling process works with an overlap to 
achieve smooth road boundary delineation. Fig. 6 
shows final road edges overlaid over the point 
cloud. The locations were independently formed 
on the left and right sides of the road. 

Figure 6. Road edges delineation 

4. VEHICLE REMOVAL AND ROAD MODELING 

Once the road boundaries are available, a simple 
thresholding can extract the vehicles; segments of 
the road between edge lines are approximated by 
a plane. To follow the changes in road surface 
orientation, the thresholding scheme should be 
adaptive, which guarantees that candidate points 

representing a vehicle will have true perpendicular 
height values with respect to the actual road 
surface – this way the very same vehicle 
description is obtained no matter whether the road 
is horizontal or of steep grade. Fig. 7 shows point 
clusters extracted as vehicle candidates. Note that 
besides the vehicles, there are other extracted 
objects that are definitely not vehicles, such as 
vegetation or guide rails on the side, and thus 
should be removed during subsequent processing. 

Figure 7. Thresholding the ascended points along 
the scanlines to detect vehicle objects 

The vehicle candidate point clouds are modeled to 
support both vehicle classification and blunder 
detection – the removal of any raised objects that 
are not vehicles. As the current LiDAR point 
density, ranging typically between 1-5 points/m2,
and the relatively sizeable footprint size of the 
laser beam, usually in the range of 10-30 cm, 
cannot allow for very precise geometrical 
description of the vehicles, thus only coarse 
parameterization is possible of the vehicles. For 
instance, determining the 3D envelope of the 
vehicle points and then describing it by length, 
width and height(s) parameters. In addition, 
derived parameters, such as vehicle footprint size 
or volume, can be used. Figure 8 depicts vehicle 
points, showing both LiDAR scanlines and actual 
points.  

Figure 8. Vehicle points extracted with original 
scanlines overlaid. 
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Using the basic vehicle parameters, a blunder 
detection process is executed to remove all non-
vehicle objects. Vehicle length varies as a function 
of the relative speed between a vehicle and the 
LiDAR sensor platform, but the width is invariant 
and thus provides the first criterion for blunder 
detection. Fig. 9 shows a concrete structure 
separating the two sides of the road that can be 
easily discarded, as its width falls below the 
minimum vehicle width and it has an unlikely long 
length. Additional filters are based on footprint size 
and volume. 

Figure 9. Concrete wall, a blunder object. 

Once all the likely non-vehicle objects are 
removed, the next objective is the classification of 
the vehicles. The original vehicle parameter 
space, however, does not offer an efficient 
classification domain, as its dimensionality is high 
and the parameter correlation is unknown. 
Therefore, a Principal Component Analysis (PCA) 
is preferred to arrive at a reduced feature space 
where the classification takes place. A variety of 
parameter combinations have been tested such as 
using width, length, area and volume, or width, 
length and height profile; or only height profile, 
e.g., modeled by four values along the vehicle 
motion direction; and similar parameters 
augmented by average intensity values. Detailed 
results can be found in (Toth et al., 2003b). Fig. 10 
shows the 2D classification space, based on four 
parameter modeling, determined by a 72 vehicle 
training data set. The vehicle classes are 
passenger cars, trucks and all other vehicles.  

The classification performance was tested on 
different data sets, and in general showed a good 
performance. From the three classifiers 
investigated, i.e., the rule-based, the Voronoi 
tessellation, and the neural network, the first one 
provided the best performance, consistently 
achieving about 98% success rate, see (Toth et 
al., 2003a). It is important to note that the direction 
of the vehicle motion can also be recovered in 

some cases. Finally, the use of intensity data did 
not result in a better classification performance. 

Figure 10. The PCA classification of the vehicles 
in the 2D space 

5. VELOCITY ESTIMATES 

The vehicle velocity is the second parameter 
needed to compute the traffic flow. The individual 
speed of each vehicle is usually not of interest, as 
only the average velocity of a group of vehicles is 
needed to obtain flow data. In the context of 
LiDAR, the dependency of the vehicle length with 
respect to the relative velocity between the object 
and the sensor forms the basis for speed 
estimation. Due to the continuous scanning, the 
vehicles appear shorter or longer in the relative 
motion direction. Equation (4) describes the 
relation between the actual size, s, and measured 
size, m, of the vehicles moving in both directions: 
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where 
LiDARV  is the velocity of LiDAR platform, 

vehV  is 

the vehicle velocity and θ  is the intersection angle 
of LiDAR scan line and vehicle direction, usually 
small enough, so it can be ignored.   

The determination of the vehicle direction is rather 
obvious, as vehicles always travel on the same 
side of the road. But, if needed, a simple statistics 
can show that on one side of the road the sensed 
length of the vehicles is longer than on the other 
one. Similarly, the LiDAR platform speed is known 
at high accuracy. The size parameters, however, 
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have significant errors. First, the LiDAR footprint 
has a non-negligible size. Then the LiDAR 
scanlines are separated by an even larger 
distance and thus setting a lower limit for the 
accuracy of the length estimation. Second, the 
actual vehicle size is unknown; only broad vehicle 
categories are determined in the classification 
phase. Therefore, only a size distribution is 
available for the computation. According to a study 
by Ramprakash, 2003, the percentage of the 
passenger car vehicle market share in the USA 
with corresponding length and height parameters 
is shown in Table 1. 

Passenger 
car type 

Share 
[%] 

Average 
length [m] 

Average 
height [m] 

Small 27% 4.36 1.37 
Mid size 49% 4.73 1.36 
Large 9% 5.23 1.38 
Luxury 15% 4.77 1.35 

Average  4.68 ± 0.35 1.36 ± 0.01 

Table 1. The basic statistics of the US passenger 
car vehicle market 

Based on the average vehicle length, the velocity 
of a vehicle can be approximated and the 
accuracy of the length estimate can be derived 
from the vehicle category parameter distribution. 
Table 2 shows representative numbers for the 
velocity error at typical sensor and car relative 
speeds (aircraft speed was 55 m/s and the car 
speed ranged between minimum and maximum 
freeway speed). As expected, the estimation error 
is smaller if the vehicle and the LiDAR are moving 
in the same direction (the measured length is 
longer at smaller relative speed). Another 
interpretation is that the relative impact of the fixed 
size of the car length range is smaller if it is 
compared to longer measured values, see Eq. 4. 
Although the velocity accuracy estimates are poor, 
the average velocity of a group of vehicles can be 
estimated significantly better as vehicles usually 
move at comparable speed plus the averaging 
process has an error cancellation character. 

 Measured Length  
[m]

Velocity Accuracy 
[m/s]

3 9.6 
7 3.0 
10 2.0 
15 1.3 

Table 2. The velocity error estimates based on 
measured vehicle length. 

6. DENSITY AND FLOW PARAMETERS 

Based on the computed vehicle locations and 
class categories, as well as estimated velocities, 
various flow parameters can be derived. Flow is 
typically computed as a product of average vehicle 
density and average vehicle velocity. Density is 
usually derived after calculating the average 
spacing of vehicles along a given lane/road by 
Equation 5. Spacing is the distance between the 
vehicles moving in the same direction, as 
measured between corresponding points (front to 
front) of consecutive vehicles.  

VehiclesofNumber

VehiclesBetweenSpace
SpaceAverage

"=    (5) 

To illustrate the traffic flow computation process, 
data from a high-density (2-4 points/m2) LiDAR 
survey, acquired on February 19, 2004, over the 
downtown Toronto area with the Optech ALTM 
30/70 system, were used. Fig. 11 shows a 
highway segment with vehicles extracted from the 
LiDAR data and overlaid on the orthoimage. Note 
that the LiDAR point cloud of the vehicles falls 
before the vehicles in the left side and after the 
vehicles on the right, respectively. A red mark 
shows the likely location of the LiDAR beam when 
the image was taken. For referencing, static 
objects were also overlaid – one point at the 
centerline and points at the guard rail.  

Figure 11. Vehciles extracted from LiDAR data overlaid on the orthoimage. 
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As the road is in a relatively flat area, only the 
horizontal components were used to compute the 
various flow parameters. The errors in spacing 
computation due to the non-instantaneous LiDAR 
data are ignored – this is acceptable if the relative 
speed of the vehicles is not changing rapidly. 
Table 3 lists the results, grouped by lane and road 
sides. Note that while vehicle velocity estimates 
are accurate to about 20%, the final flow has 
about 12% accuracy. 

Lane
No.

Space
[m]

Vel.
[mile/h] 

Density 
[Veh/mile] 

Flow 
[Veh/h]

L1 24.5 50 66 3234 
L2 29.6 47 54 2646 
L3 24.9 48 57 2793 

Total 8.7 49 
± 10 

177
± 0.2 

8673
± 1100 

Table 3: Traffic flow data 

7. CONCLUSION 

Our experiences with using LiDAR for obtaining 
traffic flow data have shown encouraging results. 
The developed concept and its prototype 
implementation proved that high-point density 
LiDAR can effectively support traffic monitoring 
and management by delivering a variety of traffic 
flow data. The proposed system represents an 
add-on capability to existing infrastructure airborne 
LiDAR mapping. Basically, this technique extracts 
the vehicles during the process of the road surface 
extraction and modeling, and uses them as a 
source for obtaining traffic flow. The recent 
introduction of the reflectance information is 
expected to further improve the road extraction 
process, while the vehicle classification seems to 
be unaffected by the availability of intensity data. 
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ABSTRACT: 

In this paper we discuss the feasibility of using airborne LiDAR imagery data to support traffic flow parameter estimation, including 
primarily vehicle count estimates and vehicle classification, and to a less extent, velocity estimates. As a part of the classification task, 
we demonstrate the capability of LiDAR data to efficiently identify vehicles or vehicle categories by shape, especially by their
vertical profile. We show that LiDAR offers the capability to better preserve the vehicle geometry, especially the vertical profile, as 
compared to optical imagery. During the projection process in optical imagery the vertical dimension is usually lost. Thus, a better 
vehicle classification/grouping was found from using dense LiDAR data. The identified and categorized vehicles can directly support 
the vehicle count estimation process. Experimental results are presented to validate the performance potential of the LiDAR data
based vehicle extraction process. 

1. INTRODUCTION 

LiDAR is an emerging technology in the field of remote 
sensing that is capable of rapidly generating high-density, 
georeferenced digital elevation data with an accuracy 
equivalent to traditional land surveys, but significantly faster 
than traditional airborne surveys (Flood, 1999). Despite the 
initial high price, these systems have made remarkable 
market penetration, and recent technical and methodological 
advancements have further improved the capabilities of this 
remote sensing technology (Wehr and Lohr, 1999). In 
addition to the conventional Digital Surface/Elevation Model 
(DSM/DEM) products, the latest high-performance LiDAR 
systems can deliver very dense and accurate point clouds and 
thus provide data for more sophisticated applications. At the 
APSRS 2003 Annual Convention, Optech introduced the 
ALTM 30/70, a 70 kHz system and soon after that, LHS 
announced the 58 kHz version of its system. Both provide 
excellent support for high accuracy mapping. In reality, these 
developments make LiDAR technology capable of acquiring 
transportation application-specific information beyond 
conventional mapping, supporting tasks such as extracting 
moving objects. In this paper we investigate the potential of 
using airborne laser scanning technology for traffic 
monitoring and other transportation applications. 

Road transportation systems have undergone considerable 
increases in complexity and at the same time traffic 
congestion has continued to increase. In particular, surface 
vehicle ownership and the use of vehicles are growing at 
rates much higher than the rate at which roads and other 
infrastructure are being expanded. Transportation authorities 
are increasingly turning to existing and new technologies to 
acquire timely spatial information of traffic flow to preserve 
mobility, improve road safety, and minimize congestion, 
pollution, and environmental impact (Zhao 1997). Besides 
the widely used conventional traffic data collection 
techniques, such as detection loops, roadside beacons, and 
travel probes, the state-of-the-art remote sensing technologies, 

such as LiDAR and high-resolution digital cameras can 
already provide traffic flow data over large areas without 
ground-based sensors. It is expected that the use of modern 
airborne sensors supported by state-of-the-art georeferencing 
and image-processing technologies will enable fast, reliable, 
and accurate data capture for traffic flow information 
retrieval with high spatial and temporal resolution. In 
particular, the following data could be supported: vehicle 
count/type, vehicle velocity and travel time estimation, 
origin-destination flows, highway densities (passenger car 
per unit distance per lane) and exit flow monitoring, 
intersection turning volumes, detection of congested/incident 
areas in real-time to support traffic redirection decision-
making, platoon dispersion/condensation monitoring (which 
can be effectively accomplished only by remote sensing 
methods), and incident detection and response (Toth et. al., 
2003a). 

In this paper we investigate the feasibility of using LiDAR 
data for traffic flow estimates. In a sense, extracting vehicles 
over transportation corridors represents the next step in 
complexity by adding the temporal component to the LiDAR 
data feature extraction process. The facts are that vehicles are 
moving at highway speeds and the scanning acquisition mode 
of the LiDAR certainly poses a serious challenge for the data 
extraction process. Using data from regular LiDAR missions, 
it will be shown how vehicles can be extracted and then 
parameterized in a way that a robust classification of the 
vehicles is possible. The potential for determining vehicle 
speed estimates will be also addressed.  

2. FLOW DATA 

The research results discussed here have been accomplished 
through a multi-year multi-university effort supported by the 
joint sponsorship of the US Department of Transportation 
(USDOT) and NASA under the National Consortia on 
Remote Sensing for Transportation (NCRST). From the four 
major topics, the NCRST-F consortium is concerned with the 
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monitoring and managing of traffic flows, and with the 
intermodal transfer of goods, see 
(http://www.ncrst.org/research/ncrst-f/ncrst-f_home.html). 
Similar investigation with respect to using 4k by 4K direct 
digital imaging data can be found in Grejner-Brzezinska and 
Toth (2002, 2004). The major platforms currently used in the 
NCRST-F research activities are airborne, including fixed-
wing aircraft, helicopter and UAVs, and spaceborne 
platforms. These platforms host a variety of sensors, but 
predominantly, frame or line CCDs, video cameras, 
multi/hyperspectral sensors and LiDAR (FDOT, 2002). This 
paper is concerned only with airborne platforms with LiDAR 
as the source for flow information. We discuss the use of 
LiDAR data for extracting moving vehicles over the 
transportation corridors and grouping them into broad classes. 
The method includes a filtering process of identifying 
vehicles, the selection of a parameterization to describe the 
LiDAR point cloud of a vehicle, the optimization of the 
parameter representation, and the classification process. 
Using three datasets obtained from typical LiDAR surveys, 
classification techniques have been tested to assess the 
performance of the vehicle groupings. Figure 1 shows a 
typical road segment with various vehicles clearly 
identifiable from the LiDAR point cloud, demonstrating the 
high level of spatial details provided by LiDAR. 

Figure 1. The LiDAR dataset captured over a freeway. 

The ground-based data commonly available for traffic 
monitoring (such as detection loops, roadside beacons, travel 
probes and driver input) are spatially local in nature, while 
remotely sensed data have the capability of providing the 
spatial scale necessary for supporting effective (and real-time) 
traffic management. In the USA only about 25% of freeways 
in urban areas are subject to regular real-time traffic control 
by classical methods, which certainly indicates a need to 
implement new tools/methods to improve (enable) traffic 
management.  

Important features that are unique to remote sensing in traffic 
monitoring include: (1) sensors are not attached to just one 
location (for example, tracking dangerous cargo or incidents), 
(2) sensors can be deployed during special events (natural 
disasters, evacuation), (3) provide superior spatial resolution, 
and (4) provide up-to-date traveller information, if applied in 
real-time. The major application areas where remote sensing 
can significantly contribute are (1) highway traffic 
monitoring, (2) highway traffic management, and (3) freight 
and intermodal analysis. The use of remote sensing can 
enhance the efficiency of many of the present practices used 
to determine the level of service; vehicle miles traveled 
(VMT), average annual daily traffic (AADT), and vehicle 
classifications and counts. Remote sensing can also help to 
determine passenger and freight flows at intermodal centers, 

and identify congestion points and patterns. Airborne or 
spaceborne imagery can improve spatial resolution, accuracy, 
and the visualization of traffic flows by the fusion of 
multisensor databases. 

The motivation for the research presented here and the 
answer to the question of why LiDAR should be considered 
for this task at all, as its price tag seems to be overly high, is 
related to the following two facts: 

• A great amount of LiDAR data is collected over 
transportation corridors and in urban areas with a 
dense road network. In these datasets, vehicles on the 
road represent obstructions to the LiDAR pulses as 
they are reflected back from the vehicles instead of 
the pavement. Therefore, a substantial amount of 
processing must be devoted to the “removal of the 
vehicle”. Rather than removing and discarding the 
signals from vehicles, they can be turned into traffic 
flow information.   

• Somewhat connected to the previous fact is that 
LiDAR systems can be turned on to collect data 
during transit, which accounts for substantial flying 
time. At almost no cost, a significant amount of data, 
rich in traffic flow information can be acquired. There 
is indication that transportation and other agencies 
will be deploying LiDAR systems over transportation 
corridors at an increasing rate in the future.  

Finally, it should be noted here that LiDAR offers an 
advantage of all-weather and day-and-night imaging 
capability, compared to a panchromatic/color CCD, which is 
light and cloud-coverage dependent.  

3. LIDAR DATA PROCESSING CONCEPT 

The experimental data processing sequence is shown in 
Figure 2. In the first step, the input LiDAR data are filtered to 
reduce the point cloud to the road area (with some margin). 
The location of the road geometry is usually available from 
transportation agencies that maintain CAD or GIS databases. 
As either the accuracy of the road location information is 
limited or only centerline data are available, it is mandatory 
to perform a road-matching step. During this process, the 
crown lines of the road, on both sides for divided roads, are 
tracked from the LiDAR data. The process is driven by the 
road line description, and by running a moving window 
across the road line, the crown lines are estimated. As 
vegetation and man-made objects, such as vehicles, bridges 
and other structures, can obstruct the LiDAR pulse to reach 
the road surface, a subsequent processing step is necessary to 
check and, if possible, to restore the continuity of the road 
surface. This includes monitoring the directional changes of 
the road line, as well as the flatness of the road surface itself. 
Once the road crown lines have been estimated, the vehicle 
extraction is rather simple. Using a preset threshold, LiDAR 
points returned from vehicles can be easily separated from 
the road surface points. The actual thresholding is done in the 
surface normal direction, which is only critical for long 
vehicles traveling on steep roads. Where obstructions 
prevented the extraction of the road crown lines, obviously, 
there is no vehicle extraction. At this point, the extracted 
vehicles, as described by their location with time, can be 
passed to the transportation information system for further 
processing. The point distribution of the extracted vehicles 
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provides rich information for vehicle classification. An 
important aspect is the parameterization of the vehicle, 
discussed in detail in the next section. Once the vehicles are 
grouped into main categories, velocity estimates can be 

derived and subsequently used for overall vehicle flow data 
computation. 

Figure 2. Design architecture and data processing flow. 

4. VEHICLE PARAMETERIZATION 

To distinguish major vehicle types, characteristic parameters 
have to be chosen. The difficulty, in short, is that the typical 
LiDAR point density is comparable to vehicle dimensions. 
Thus it is not trivial to identify surface areas of the vehicles at 
sufficient accuracy, let alone to recognize them at all. For 
instance, a small car traveling in the opposing direction to the 
laser scanner will have a large relative velocity between the 
sensor and object, resulting in few LiDAR points. The shape 
appears like a blob and gives rather limited clues about the 
actual shape of the vehicle (see Figure 1). With continuously 
increasing LiDAR point densities, the situation will certainly 
improve in the future. However, it is fair to say that model-
based matching between the actual vehicle physical 
representation and the LiDAR points is not feasible at this 
point. 

Another important aspect of the LiDAR input data is the 
relative velocity between the airborne data acquisition 

platform and the vehicles to be observed. The typical aircraft 
speed, known from the GPS/INS navigation solution, results 
in an average speed of the LiDAR sensor of about 200 km/h 
during surveys. This roughly translates into a relative 
velocity range of 100-300 km/h between the data acquisition 
platform and the observed moving objects. Figure 1 clearly 
shows the impact of the relative speed, as the vehicles 
traveling at faster relative speed (opposite direction) have 
smaller footprints, while the smaller relative velocity 
(airplane and vehicles are moving in the same direction) 
results in elongated vehicle footprints. For the extreme of 
zero relative velocity, such as the vehicle moving with the 
same ground speed as the aircraft, the LiDAR-sensed vehicle 
size would be infinite. The vehicle would become practically 
non-detectable. 

Given the elongated shape of vehicles, the vertical profile 
along the travel direction is the most plausible feature to use 
to describe vehicles from LiDAR points (remember the 
density limitation of the LiDAR data). The profile can be 
approximated by various functions. For simplicity, in our 
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initial investigation we used a six-parameter representation 
that includes the size of the vehicle footprint and then four 
vertical parameters (average height values computed over the 
four equally sized regions) as shown in Figure 3. 

Figure 3. Parameterization of LiDAR points  
representing a vehicle.

To analyze the effectiveness of the six-parameter model, 
actual tests were conducted. Woolpert LLP from Dayton, 
Ohio provided a LiDAR dataset, obtained from flights done 
for regular mapping purposes. The point density was 1.5 
point/m2, which was certainly adequate for topographic 
mapping and could be considered at best minimal for vehicle 
identification. The LiDAR data covered a freeway section of 
State Route 35 (East of Dayton), packed with vehicles, and 
was used later as a training dataset for developing the 
classifiers. 72 vehicles were chosen and processed in an 
interactive way, the regions containing vehicles were selected 
by an operator and the vehicles were automatically extracted 
by the thresholding method presented earlier. All the vehicles 
were parameterized and then categorized into three main 
groups: passenger cars, MPVs (multi-purpose vehicles such 
as SUVs, minivans, light trucks), and trucks/18-wheelers. 

To analyze parameter correlation and consequently to reduce 
the dimensionality of the parameter space, Principal 
Component Analysis (PCA) was then performed. PCA is an 
effective tool for handling data representation/classification 
problems, where there is a significant correlation among the 
parameters describing the object patterns. Using a training 
dataset, the correlation can be determined and a reduced 
parameter set can be defined that can both represent the 
information in a more compact way and can support an 
efficient classification in the reduced feature space. The clear 
advantage of the method is that it does not require any 
physical modeling of the data; of course, the selection of the 
input parameters has importance. Provided that a rich set of 
input parameters is defined, however, the method will 
effectively identify the redundancy and thus usually results in 
a quite reduced parameter representation. In our 
investigations the 72 vehicles provided a statistically 
meaningful dataset for the PCA process. In two sessions, the 
four- and six-parameter datasets were analyzed (height only 
and height with footprint size). The eigenvalues computed 
from the covariance matrix for the six-parameter model and 
ordered monotonically are shown in Table 1. 

In analyzing the results, it is quite surprising to see that more 
than 98% percent of the original information content is 
preserved, if only the two largest eigenvalue components are 
used for data representation. To assess the classification 
performance, for which high information contents do not 

necessarily give guarantees, the 72 vehicles converted into 
the two-dimensional feature space as plotted in Figure 4. 
Cars are marked with !, MPVs with +, and trucks with *,
respectively; vehicle direction with respect to sensor motion 
is coded in red and blue. Figure 5 shows the results, if only 
the height parameters (4) were used as input in the PCA. 

E1 E2 E3 E4 E5 E6
Eigenvalues 
(true values) 

18.78 1.02 0.09 0.08 0.02 0.01 

Eigenvalues 
(normalized) 

93.87 5.09 0.45 0.41 0.11 0.07 

Information 
content [%] 

93.87 98.96 99.41 99.82 99.93 100

Tabel 1: The eigenvalues and information contents of the 
training data set, which consisted of 72 vehicles. 

Figure 4. Vehicle distribution in the two-dimensional feature 
space (six-parameter input data-based PCA). 

Figure 5. Vehicle distribution in the two-dimensional  
feature space, if only height parameters (4) were  

used in the PCA process. 

By comparing Figures 4 and 5, it can be seen that vehicle 
categories can be effectively separated using solely vehicle 
height parameters. Obviously, not using the length 
information means that the vehicle travel directions become 
indistinguishable. Why the width has no significant impact is 
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probably explained by two facts. First, the variations between 
the three vehicle groups are rather small – the difference 
between the mean vehicle widths is about 0.5 m. Second, the 
footprint of the LiDAR, the area that one pulse will reach, is 
about 25 cm (diameter of the circle/ellipse). Given the 
spacing between the LiDAR pulses, which is at least 0.5 m, it 
is apparent that the measuring accuracy of the vehicle width 
is rather poor. Consequently the information content of this 
parameter is rather insignificant. The vehicle travel direction, 
however, can be recovered from the six-parameter model. 

5. VEHICLE CLASSIFICATION  

For vehicle classification, three methods were considered. 
The main goal is to classify the vehicles into the three main 
categories: passenger cars (P), multi-purpose vehicles (MPV) 
and trucks (T). Each category has two subclasses (along and 
against) considering the traffic direction relative to the flight 
direction. Therefore, the recognition process is expected to 
separate the vehicles into six groups, identified in Table 1. 

ID Category 
1 P along 
2 P against 
3 MPV along 
4 MPV against 
5 T along 
6 T against 

Table 1. Vehicle categories used with the LiDAR data set. 

The first method, a rule-based classifier, contains decision 
rules derived from the PCA transformed features. As depicted 
in Figure 6, a clear separation, in other words, clustering of 
samples with identical labels can be easily made between the 
groups by using straight lines. These lines are of course 
specified by two variables, which are determined by simple 
calculations. 

For example, Category 1 (passenger cars traveling along the 
flight direction) is bounded by Line A and C, furthermore by 
the coordinate axis x. Line A can be defined by (1): 

0.5 3
3

15A Ay a x b x
−= + = + (1) 

where x and y are the two first principal components. 

Similarly Line C is defined by (2) 

4.5x =   (2) 

The rule for the category is thereafter: 
2.5

( 3) ( 4.5) ( 0)
15

y x AND x AND y< − + > >     (3)

Category 3 (MPV traveling along the flight direction) 
represents a more complex cluster boundary, which can be 
described as: 
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where the indices show which parameters correspond to 
which lines. 

The determination of all parameters and subsequent creating 
of all the rules is a rather straightforward task. However, the 

introduction of new observations (new features) usually 
requires the refinement of the rules. Applying the rules to an 
unknown feature vector is obviously simple and fast. 

Figure 6. Segmentation of the two-dimensional feature space 
of the training vehicles 

The second investigated classifier was a fundamental 
statistical technique: the minimum distance method. This 
classifier is based on a class description involving the class 
centers, which are calculated by averaging feature 
components of each class. An unknown pattern is classified 
by computing the distances between the pattern and all class 
centers and the smallest distance determines to which class 
the pattern will be classified. The distance calculation based 
on the Euclidean measure in our two-dimensional case is 
(Duda, 2001): 

2 2( ) ( )j j jD x x y y= − + −  (5) 

where the class center of class j  is given by jx and jy . The 

classification is based on the evaluation of (6): 

arg min( ) 1, 2,...6j
j

C D j= = (6) 

This method is simple and the algorithm processes rather 
quickly. As new vehicles are added to the training set, the 
class centers have to be recalculated, but the decision formula 
remains unchanged. Class centers and boundaries, which 
form a Voronoi tessellation, are shown in Figure 7. 

Figure 7. Segmentation of the two-dimensional feature space 
of training vehicles by the minimum-distance method 

(Voronoi tessellation). 

35



The third method in the vehicle recognition investigation was 
based on an artificial neural network classifier. As it is 
commonly agreed (Brause, 1995; Rojas, 1993), most 
practical works require 3-layer feed-forward (back-
propagation) neural networks; hence such a structure was 
implemented in our tests. The training method was the 
Levenberg-Marquard algorithm (Demuth, 1998), the 
maximal number of training steps (epochs) was 70, and the 
required error goal value was 0.1. The network error was 
calculated by the mean square error (MSE) method. At the 
end, the output of the neural network was rounded to the 

nearest integer. Further details on the neural network 
classifier can be found in (Toth et. al., 2003b). 

The three developed vehicle recognition techniques were 
tested on the training data set of Ohio (1), on the data set 
containing vehicles from Ohio and Michigan, (2) and on 
combined dataset, including the Ontario data (3), provided by 
Optech. The first test (in-sample test) was only an internal 
check of the algorithms. Tables 2 and 3 show a performance 
comparison of the three techniques. 

Data set  
(total number of vehicles) 

Rule-based Minimum distance Neural network 

Ohio (72 vehicles) 0 (0%) 8 (11.1%) 2 (2.8%) 
Ohio + Michigan (87) 2 (2.3%) 12 (13.8%) 8 (9.2%) 
Ohio + Michigan + Ontario (102) 2 (2%) 17 (16.7%) 16 (15.7%) 

Table 2. The comparison of the three recognition techniques: vehicle count number of misclassification errors. 

Data set 
(total number of vehicles) 

Rule-based Minimum distance Neural network 

Ohio (72 vehicles) 0 (0%) 4 (5.6%) 2 (2.8%) 
Ohio + Michigan (87) 2 (2.3%) 8 (9.2%) 8 (9.2%) 
Ohio + Michigan + Ontario (102) 2 (2.3%) 10 (9.8%) 14 (13.7%) 

Table 3. The misclassification errors of the three methods, without considering the vehicle travel directions. 

The rule-based method has perfectly identified the features, 
while the other two methods have small recognition errors. In 
all methods, the most frequent misclassification error type 
was the mismatch of the Ps and the MPVs in the along 
direction, since passenger cars can have shape and length 
very similar to MPVs. Ignoring the relative traveling 
direction, in other words classifying into three classes instead 
of six, the results are somewhat different as shown in Table 2. 

The tests with the combined Ohio, Michigan and Ontario 
data show strong out-of-sample performance, which is a good 
indication of the applicability of the proposed vehicle 
recognition method. Obviously, more tests with a variety of 
data are needed to confirm the ultimate potential of using 
LiDAR data as a source for traffic flow estimates.  

6. VELOCITY ESTIMATES 

In simple terms, traffic flow over a road segment is defined as 
the product of the vehicle density and the average vehicle 
velocity. Therefore, estimating the speed of the vehicles is as 
important as counting and categorizing the vehicles, which 
was demonstrated in the previous section. In the following 
example, we will analyse how their velocity can be estimated. 
To extract vehicle velocities from LiDAR data, however, is 
not a simple task. Knowing the actual size of the vehicle, s,
and the LiDAR-measured size of the vehicle, m, the vehicle 
speed can be expressed with respect to the LiDAR sensor 
speed as: 

lv v
m

sm
v ⋅−=

where vv is the estimated vehicle velocity and vl is the speed 
of the LiDAR sensor. The difficulty of using this expression 
is that neither s nor m (the actual and the LiDAR-measured 
vehicle sizes) is known with sufficient accuracy. Only the 
LiDAR sensor speed is available with good accuracy. Clearly, 
the main vehicle categories provide some approximation of 
the vehicle size in the form of ranges. Unfortunately, except 
for the 18-wheelers, these intervals are overlapping. The 
accuracy of estimating m is, at minimum, limited by the 
footprint size of the LiDAR (Maas, 2002). In summary, 
individual vehicle velocities, in general, cannot be estimated 
at acceptable accuracy from LiDAR data; or, more precisely 
not from data acquired by current airborne laser scanners. 
The introduction of additional sensor data, such as 
simultaneously acquired imagery (Toth and Brzezinska, 
2000b), however, can provide the missing vehicle size 
information and thus satisfactory velocity estimates can be 
achieved. 

Without using additional sensory data, reasonable estimates 
can be obtained for specific situations such as large trucks or 
a platoon. For example, the vehicle category of the eighteen-
wheelers can be characterized by a typical vehicle length with 
rather small variations in size. Thus, for such a truck 
travelling in the same direction as the LiDAR platform, the 
estimate of the vehicle speed could be determined at about 
10% accuracy level under good conditions. For a platoon, 
statistical methods can provide a methodology for average 
speed estimation. For example, knowing the distribution of 
vehicle sizes of the main categories has the potential to 
estimate the average velocity of a larger group of the LiDAR-
measured sizes with a reasonable confidence level, sufficient 
to derive flow data. 
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7. CONCLUSIONS 

In this paper, the feasibility of using high-performance 
LiDAR data to derive traffic flow information has been 
studied. A simple model, built on the combination of vehicle 
shape and vehicle size, has shown robust performance for a 
sizeable population of vehicles extracted from two LiDAR 
datasets obtained from regular mapping airborne surveys. A 
principal component analysis performed on the six-parameter 
model resulted in a substantial reduction of the parameter 
space. Using only two of the largest eigenvalue components, 
not only could the three main vehicle groups be classified, 
but the vehicle travel direction could also be identified. The 
training set included 72 vehicles and the resultant classes in 
the two-dimensional parameter space. Three classification 
methods have been used and all of them have produced rather 
good results. Therefore, it is fair to say that LiDAR data can 
be efficiently used to support traffic flow applications. All 
three methods were able to recognize the vehicle categories 
with accuracy better than 80 %. This high recognition rate 
proves that a classifier designed and parameterized by an 
adequate training dataset can be successfully applied on other, 
unknown data sets. Furthermore, the results are even more 
encouraging, if the relatively modest LiDAR point density is 
factored in (1.5 point/m2). State-of-the-art LiDAR systems 
can easily provide a 3-5 times denser point cloud and 
consequently better classification performance can be 
expected.  

Estimating the velocity of the extracted and categorized 
vehicles, however, has produced mixed results. The speed for 
larger vehicles can be coarsely approximated, but there is no 
acceptable solution for estimating individual vehicle velocity 
exclusively from LIDAR data. Combining LIDAR with 
complementary sensor data, such as imagery, however, can 
provide a good base for velocity estimates and thus traffic 
flow data can be obtained. 

In summary, the developed method has demonstrated that 
LiDAR data contain valuable information to support vehicle 
extraction, including vehicle grouping and localizations. The 
classification performance showed strong evidence that the 
major vehicle categories can be efficiently separated. With 
the anticipated improvements in LiDAR technology, such as 
denser point cloud and smaller pulse footprint, the 
classification efficiency is expected to increase. The price of 
LiDAR, however, is prohibitive at this point to support traffic 
monitoring applications. Nevertheless, collecting data over 
transportation corridors during regular surveys already offers 
a no-cost opportunity to obtain important traffic data. In 
addition, the advantage of the moving platform is that it can 
be freely deployed any time and anywhere. 
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ABSTRACT: 

Recent developments in airborne sensor technologies have led to not only improved mapping performance, but have opened up a 
series of new applications. Enhanced spatial and temporal resolution can now allow for effectively detecting and describing moving
objects for the first time. Vehicles, moving or standing, used to be problematic during the traditional mapping process; they needed 
to be detected and removed during the surface and/or object extraction process. From a traffic monitoring and management 
perspective, however, these objects are of high interest. The number of vehicles, their location and velocity as well as additional
properties, such as vehicle type, size or weight, represents the essential base data for traffic flow description and modeling. Research 
has shown that vehicles can be extracted, counted and tracked from image sequences and that LiDAR data can provide an effective
coarse categorization of vehicles in a highly automated way. 

An analysis of the performance on the traffic flow estimation process for a typical state-of-the-art airborne sensor suite, composed of 
a LiDAR and a digital camera is presented. To assess the absolute performance, a dedicated test flight over a calibration range was 
conducted. The test area had specific ground targets that are equally identifiable and can be accurately positioned in both LiDAR 
data and imagery. In addition, a moving target was used to assess the size measuring performance of the moving object extraction
process. The results confirmed that high-performance airborne sensors can provide quality data for traffic flow information 
extraction. 

1. INTRODUCTION 

Transportation represents a major segment of the world’s 
economy, and as such must be carefully monitored and 
planned. This requires the most up-to-date, accurate and 
continuous methods for screening and mapping for effective 
modeling and management. Traditionally, permanent 
installations provide mostly real time information usually 
gathered from many diverse sources, such as electronic 
sensors in the pavement (loop detectors), road tubes, ramp 
meter sensors, and video and digital cameras. Data from 
these sensors are sent to the traffic management center at 
various times. Most of this information is only recorded; a 
small part of it is analyzed in real-time and used for 
immediate traffic control and decision-making. Furthermore, 
the installation and use of ground-based sensors disrupts 
traffic and endangers the crews. The major focus of this 
research effort, in general, is to improve the efficiency of the 
transportation system by the integration of remotely sensed 
data with the traditional ground data to monitor and manage 
traffic flows. 

The National Consortium for Remote Sensing in 
Transportation-Flows (NCRST-F), led by The Ohio State 
University, and sponsored by the U.S. Department of 
Transportation and NASA, was established in 2001. Our 
partners in NCRST-F are the University of Arizona and 
George Mason University. As mentioned earlier, the major 
focus of the OSU research team is to improve the efficiency 
of the transportation system by the integration of remotely 
sensed data with traditional ground data to monitor and 
manage traffic flows. Our research team is concerned with 
the vehicle extraction and traffic pattern modeling based on 
airborne digital data that is collected by medium-format 
frame cameras and LiDAR systems. This paper is an 

extension of our earlier publications, where theoretical and 
practical studies on the feasibility of using LiDAR data and 
airborne imagery collected over the transportation corridors 
for estimation of traffic flow parameters, were presented.  

The driving force behind this research effort is opportunity 
mapping. A fairly large percentage of geospatial data 
acquisition is done over urban areas with a substantial road 
network, where the vehicles become obstacles that need to be 
removed. In particular this is the case for road surface and/or 
road infrastructure mapping. This information should not be 
discarded, however, but rather the data should be directly 
converted to traffic flow data. Collecting data over the 
transportation corridors during regular surveys offers a 
unique opportunity to obtain important data for transportation 
planners and managers at practically no additional cost. Data 
can be acquired also in transit while the system is flown 
between various mapping jobs. Medium format cameras have 
become standard companion sensors for LiDAR, providing 
simultaneous visual image coverage and thus this imagery 
can be also used to support traffic flow extraction.  

In this contribution the actual example of traffic flow 
estimation, along with performance validation obtained from 
high-accuracy datasets collected in late 2005 in Ohio, USA is 
presented.  In particular, vehicle extraction, velocity 
estimation supported by fusion of LiDAR and image data, as 
primary parameters describing the traffic flow, are discussed 
and analyzed. 

2. TRAFFIC FLOW 

For highway planning and traffic management purposes, 
each road segment is characterized by its traffic flow. Flow 
can be defined as the number of vehicles passing a given 
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point on a highway during a given period of time, such as 
vehicles per hour. Flow is one of the primary elements of 
traffic stream description besides density and speed. The 
three basic parameters of traffic stream are related to each 
other by the following relation: flow is the product of speed 
and density. The two basic types of mathematical models for 
describing traffic flow are the macroscopic and microscopic 
models. While macroscopic models are concerned with 
describing the flow-density relationship for a group of 
vehicles, microscopic models describe the flow by tracking 
individual vehicles using car-following logic. The 
relationship between flow and density is frequently used in 
freeway traffic management to control the density in an 
effort to optimize productivity (flow). The relationship 
between speed and flow could be used for design purposes, 
as it defines the trade-off between the level of service on a 
road facility (as expressed by the speed) and the productivity 
(as defined by the flow). Traffic control is aimed at 
managing and controlling the movement of traffic on streets, 
highways, and freeways in an attempt to optimize the use of 
such facilities. Traffic control service, in general, is 
responsible for collecting real-time traffic data from the field 
and then processing the data into useful information 
(Chowdhury and Sadek, 2003). 

Traffic flow is a generic term used to describe vehicle 
movement and volume over a transportation network. Two of 
the most important traffic measures produced by state DOTs 
and other transportation agencies around the world are 
AADT and VMT (Pline Ed., 1992). Average annual daily 
traffic (AADT) is produced to represent the vehicle flow over 
a highway segment on an average day of the year. Vehicle 
miles traveled (VMT) indicates travel over the entire 
highway system and is used to indicate mobility patterns and 
travel trends. VMT is also used as an indicator for allocation 
of highway resources. Flow data are generally obtained by 
ground-based equipment, such as loop detectors or road tubes, 
which are fixed to a location and are deployable as needed. 
In the latter case, the sample data are collected from road 
tubes placed in the traveled portion of the road, disrupting 
traffic and endangering the crews when placing or collecting 
the tubes. Using satellites and air-based platforms, the 
survey/control crews can cover large areas, access remote 
highways, and carry sensors that can collect data from safe 
and non-disruptive off-the-road locations. The imagery 
collects “snapshots” of traffic over large areas at an instant of 
time or a sequence of snapshots over smaller areas, whereas 
traditional data collection observes vehicles at a point on the 
highway over much longer time intervals (McCord et al.,
2003).

3. TRAFFIC FLOW FROM AIRBORNE SENSORS 

The idea of using remote sensing for obtaining traffic flow 
data comes from two directions. First, a demand for finding 
new data sources to support and improve traffic flow 
monitoring and management inspired a research initiative on 
using remote sensed data in transportation.  Second, the 
transition of the last few years from analog airborne imaging 
systems to fully digital multi-sensory imaging suites 
supported by high-performance direct georeferencing has 
provided the enabling technology needed for effective 
detection of moving targets. 

Initial research focused on extracting traffic flow data from 
aerial and satellite imagery, see (Toth et al., 2003b; Merry et. 

al, 1999; Grejner-Brzezinska and Toth, 2002 and 2003b). 
Later, theoretical and practical studies were carried out on 
the feasibility of using LiDAR data to obtain traffic flow 
estimates, see (Toth et. al, 2003a and 2004; Ramprakash 
2003; Grejner-Brzezinska and Toth, 2003a). These papers 
describe methods for vehicle detection, extraction, and 
tracking from both imagery and LiDAR, which form the 
basis for traffic flow parameter estimation, such as vehicle 
count, classification and vehicle velocity estimates. 

3.1  Flow Data from LiDAR  

A LiDAR point cloud offers explicit three-dimensional 
information of the object space and consequently provides an 
excellent basis for shape-based feature extraction. 
Furthermore, road surfaces have simple geometry and to 
some extent that applies to the vehicles; therefore, the vehicle 
extraction not only can be automated, but it can be done at a 
rather high performance level. Typically, a vegetation 
canopy over roads could pose some difficulty, although 
multiple returns from the LiDAR pulse can mitigate this 
problem. Obviously, the LiDAR point density plays a key 
role in the vehicle extraction performance and all the follow-
on processing steps. Extended experiments proved that from 
2-3 points/m2 density, the vehicle extraction becomes robust 
and there is not much improvement beyond 5 points/m2. A 
vehicle at 7 points/m2 is shown in Figure 1. For vehicle 
classification, the situation is different, as the higher point 
density is essential to differentiate among vehicle categories. 
At the 2-5 points/m2 density range, only major vehicle 
classes, such as cars, trucks and the remaining other vehicles 
could be classified at an acceptable success rate (Toth and 
Grejner-Brzezinska, 2004b). The 15-20 vehicle category 
based classification used by most transportation agencies 
requires substantially higher densities that is not routinely 
achieved in current airborne LiDAR practice (terrestrial laser 
scanning can easily provide that point density). The velocity 
of vehicles can be estimated from the motion artifact in 
LiDAR data due to the scanning pattern and the relative 
velocity of the sensor and the moving targets. The difficulty 
is that the true vehicle size is unknown and only the class 
mean or median data can be used, resulting in rather poor 
velocity estimates. The effect of the weak velocity data 
measures could be reduced, if the average velocity is 
computed for a larger group of vehicles (Toth et al, 2004b). 

Figure 1. Vehicle close-up from LiDAR. 

3.2  Flow From frame Imagery 

Vehicle detection and tracking from reconnaissance and to a 
less extent conventional airborne surveying imagery has been 
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a well-established research field for several decades. 
Developments have been mostly fueled by defense 
applications. Even a short overview of the available 
methods/techniques from this field would go beyond the size 
limitation of this paper. The approach we selected for our 
research is based on using orthorectified imagery. 
Furthermore, only medium format digital cameras, with a 
typical 4K by 4K sensor resolution were considered, such as 
the DSS system from Applanix. The image scale varied 
between 1:6,000 and 1:20,000 (in ground resolution terms, 
the GSD was in the 7-25 cm range). The creation of 
orthoimages imposes certain requirements, such as the 
availability of good surface data, either from a past mission 
or simultaneously acquired with the imagery and good direct 
sensor orientation data, but the benefits are irresistible. Most 
importantly, the vehicle shape in the horizontal footprint is 
preserved at true object scale. For overlapping images, the 
detection of moving vehicles (as well as any moving targets) 
can be accomplished by a simple image subtraction, as 
shown in Figure 2, while detection of non-moving vehicles is 
a much more complex task. Both processes can be supported 
by available road geometry data, such as road centerline or 
edge lines. Test images acquired from helicopter and fixed-
winged aircraft were used to monitor traffic flow over road 
segments and to determine turning volume at intersections. 
Results showed good performance for extracting moving 
vehicles (Grejner-Brzezinska et al, 2004; Paska and Toth, 
2004; Paska and Toth, 2005). Vehicle tracking, however, still 
needs more research, as the implemented solution produced 
unreliable results, which is partially due to the slow image 
acquisition rate (0.2-0.3 images/s) and/or lack of adequate 
overlap (Toth and Grejner-Brzezinska, 2004). 

Figure 2. Detecting moving objects in the ortho domain. 

3.3  Comparing Flow Data Obtained by LiDAR and 
Frame Imagery 

The performance of LiDAR and image based traffic flow 
extraction depends on a variety of factors, such as sensor 
specification, sensor platform, data acquisition pattern, 
sensor calibration, sensor inter-calibration, direct 
georeferencing performance and feature extraction 
performance that could be further broken down into vehicle 
detection, vehicle parameterization/classification, and 
velocity estimation. Ignoring the common and non traffic 
flow specific aspects, a simple performance matrix is 
provided in Table I, where the parameters reflect the 

cumulative results from a wide spectrum of airborne tests 
within a time span of about three years. The sensor 
instrumentation included older 10 kHz and 33 kHz LiDAR 
systems and a new ALTM 30/70, a BigShot 4K by 4K digital 
camera and DSS systems. The direct georeferencing of the 
imaging sensors was supported by several geodetic grade 
IMUs and GPS receivers. Table 1 is intended only for 
orientation purposes, as it cannot account for several factors 
of various flight and sensor configurations, such as LiDAR 
point density or image data rate/overlap, processing and 
interpretation details, such as feature extraction performance, 
image artifacts, or absolute vs. relative accuracy performance. 
Nevertheless, Table I clearly shows the main trends, namely, 
that LiDAR is very effective at vehicle extraction and coarse 
classification, but is less adequate for velocity estimation. 
Imagery has just the opposite pattern; it is less effective for 
vehicle extraction, but once vehicles are extracted and 
tracked, the velocity estimation is rather good. Since flow is 
the product of vehicle counts and velocity, the end results are 
comparable for both sensors. 

Sensor LiDAR Digital Camera 
Platform Airplane Airplane Helicopter 
Performance [%] [%] [%] 
Vehicle extraction    
Vehicles moving  95+ 90+ 95+ 
Vehicles not in 
motion 

95+ 80+ 80+ 

Vehicle 
classification into 
three major classes 

99+ 60+ 70+

Vehicle tracking 
Not 

feasible 
<50 60+ 

Error (typical)    
Velocity estimation  20-40 <20 <10 
Flow computation  10-20 <10 < 5 

Table 1. Performance of various traffic flow extraction tasks 
with respect to sensors and platforms. 

4. COMBINING LIDAR AND IMAGERY 

The recent trend in airborne surveying, the simultaneous data 
acquisition of LiDAR with medium format digital camera, 
allows for the fusion of both the sensor-level data and the 
results/features extracted from the two datasets. As discussed 
in the previous section, both sensors are capable of providing 
vehicle counts and velocity estimates, however, in varying 
quality. Since their limitations and strengths are 
complementary, they can support each other and their fusion 
could lead to better traffic flow estimation. Therefore, the 
next step in our research should be to combine the LiDAR 
outstanding vehicle extraction performance with the 
excellent velocity estimation of the optical imagery. Thus, 
the objective of this discussion is to assess how the velocity 
of moving objects extracted from LiDAR can be better 
estimated by using imagery. 

To overcome the errors in the true vehicle length estimation 
in the LiDAR data due to generalization or possible 
misclassifications, the actual length of the vehicle must be 
determined from other sensory data, such as imagery 
collected simultaneously with the LiDAR data. Though a 
single image does not provide the absolute size information, 
the image may preserve the relative object size information, 
such as the width/height ratio of a vehicle. Although an extra 
effort, such as using an adequate matching technique, is 
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required to identify the identical vehicles in the two datasets, 
the combination of the two datasets could eventually lead to 
an improved velocity estimation of the moving vehicles 
(Paska and Toth, 2005). 

Figure 3 shows extracted vehicles from LiDAR data, as they 
are overlaid on an orthoimage formed from a simultaneously 
acquired image. LiDAR vehicle points are represented in 
green and red, corresponding to the motion along or against 
the flying direction, respectively. For referencing, some static 
objects, such as one point on the centerline and points at the 
guard rail, are also marked in the figure. This figure 
illustrates: (1) the elongated (when vehicles are moving 
along the flying direction) and shortened (when vehicles are 
moving against the flying direction) lengths of the moving 
objects, as sensed by the LiDAR, and (2) the relationship 
between corresponding vehicles on the imagery and in the 
LiDAR data. The matches of the corresponding vehicles in 
the two datasets are highlighted by rectangles with identical 
colors. Due to the different nature of the two data acquisition 

techniques, the continuous scanning mode of the LiDAR 
sensor and instantaneous capturing of frame imagery, the 
locations and also the shapes of the corresponding vehicles 
differ in the two datasets. The white triangle in Figure 1 
shows the approximate location of the LiDAR beam when 
the image was taken. 

Vehicles can be sorted into four categories based on their 
direction and the relation of their positions in the LiDAR and 
imagery data: (1) vehicles traveling along the flying direction 
and scanned before the image acquisition (in Figure 1 they 
are in the upper lanes and to the right from the triangle sign), 
(2) vehicles traveling along the flying direction and scanned 
after the image acquisition (in Figure 2 they are to the left 
from the triangle sign), (3) vehicles traveling against the 
flying direction and scanned before the image acquisition (in 
Figure 1 they are in the lower lanes and to the right of the 
triangle sign), and (4) vehicles traveling against the flying 
direction and scanned after the image acquisition (in Figure 1 
they are to the left of the triangle sign).  

       (a) 

          
                                           (b)                                         (c) 

Figure 3. Vehicles extracted from the LiDAR data and overlaid on the orthoimage;  
(a) match of corresponding vehicles in the two datasets is marked with identical colors.  

Also shown are (b) vehicle elongation, and (c) vehicle shortening. 

Note that the LiDAR point clouds of the vehicles fall in front 
of the corresponding vehicles on the left side of the blue 
dotted line and behind the corresponding vehicles on the 
right side of the line. This is because the LiDAR measured 
the vehicle either before or after the image was taken. Based 
on the known relative positions of corresponding vehicles, 
search areas for a matching procedure can be determined. 
The acquisition time of each LiDAR point, as well as the 
image capture time, is recorded in GPS seconds. The possible 
relative distance between the image and LiDAR vehicle 
positions could be calculated from the vehicle velocity and 
the acquisition time of the image and the LiDAR vehicle 
points (coarse vehicle velocity approximations could be 
obtained from vehicle velocity computation from image 

sequences or the minimum and maximum speed limits of the 
actual road and so on). Note in Figure 3 that the relative 
distance between corresponding vehicles is getting larger the 
farther from the triangle sign. Similarly, the difference 
between the data acquisition time of the LiDAR sensor and 
digital camera is also getting larger. The difficulty of 
matching can be substantially reduced with higher image 
acquisition rates that can be easily achieved with modern 
digital cameras. Since the road surface, as well as the image 
sensor plane on the airborne platform is usually horizontal, 
the width/height ratio of a vehicle is fairly accurate with 
respect to, for example, the LiDAR point horizontal 
positional accuracy. Thus, the LiDAR-sensed vehicle width 
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can be used to determine the vehicle true length by using the 
width/height ratio obtained from the image.  

5. PERFORMANCE EVALUATION  

To check the performance of the combined LiDAR and 
image traffic flow extraction, as well as validate the LiDAR 
only or image only estimates, a dedicated test flight was 
organized in late 2004. The Madison County, Ohio, test 
range that includes a dense network of permanently installed 
signalized ground controls to support airborne surveys was 
temporarily extended by using LiDAR-specific targets, 
shown in Figure 4, that could be also used for image control 
(Csanyi et al., 2005). In addition, there was a “moving” 
target, the OSU Center for Mapping GPSVan (He et al.,
1994), a vehicle equipped with high performance GPS/IMU 
hardware. This vehicle, shown in Figure 4, was constantly 
moving in the test area and was mapped by both sensors 
several times under various sensor settings, such as the 
LiDAR system was operated at various pulse rates during 
repeated passes over the calibration range. This served 
several purposes. Most importantly, the impact of the point 
density for the vehicle extraction, classification and velocity 
estimation was assessed. This also provided valuable data to 
assess the impact of the various pulse rates on the overall 
accuracy of the system, with and without ground controls. 
The airborne sensor suite included an ALTM 30/70 LiDAR 
system and a DSS digital camera. The LiDAR system was 
operated at 33, 50 and 70 kHz pulse rates, resulting in point 
densities ranging from 3 to 8 points/m2. The digital camera 
had a GSD range of 10-15 cm. 

Figure 4. LiDAR target and the GPSVan. 

Table 2 shows a representative set of measurements of the 
LiDAR sensor as it mapped the GPSVan at various pulse 
rates. As expected, the accuracy of the vehicle size, as 
measured by the smallest rectangle fitted to the vehicle 
points, depends on the point density, which, in turn, is 
basically a function of the pulse rate for a given flying 
height. Clearly, the vehicle width is fairly underestimated at 
lower point densities. The smaller size is a combined effect 
of the point density, laser pulse divergence and point pattern. 
The image measurements for the width/length ratios, 

however, show a good stability. The vehicle velocity 
estimates, shown in Table 3, illustrate that the larger error 
was introduced by the incorrect vehicle length. The GPSVan 
has a true length of 5.5 m but falls into the other vehicle 
category with a class length value of 4.7 m. This length could 
be effectively decreased by the vehicle length estimation 
from the LiDAR-measured width by using the image 
measured width/length ratio. The statistics, shown for the 
cases when the vehicle and the LiDAR traveled in the same 
direction (shaded area in Table 3) clearly indicate that 
accuracy of the true length-based velocity estimation can be 
achieved for the combined LiDAR and image solution. The 
opposite direction case has a smaller improvement, (with 
statistics of estimated bias and variance of 2.39 and 1.73, 
respectively). However, it is still important as it helps to 
obtain a better overall error in velocity when the average 
velocity of a group of vehicles is computed. Further 
discussion of the error characteristics of the LiDAR-based 
length and velocity estimation is in (Paska and Toth, 2005). 

6. SUMMARY

Earlier research results demonstrated that airborne remote 
sensing based on state-of-the-art LiDAR and digital camera 
systems could provide valuable traffic flow data that can 
effectively support traffic monitoring and management. In 
particular, LiDAR has proven to be a good source of vehicle 
extraction and course classification, while digital imagery 
excels with better velocity estimation performance. In this 
paper, an initial analysis was provided to assess the overall 
performance gain in traffic flow estimation, if LiDAR and 
digital imagery were combined at the feature level.  

Vehicle velocity estimation from LiDAR is based on the 
vehicle elongation and shortening of the moving objects due 
to the scanning mode of the data acquisition. The accuracy of 
vehicle velocity estimation depends on the vehicle’s 
direction, true length, relative velocity between sensor and 
object, and on how accurately the true and LiDAR-sensed 
vehicle length could be estimated. The actual vehicle size is 
unknown in practice, and thus, the true length of the vehicles 
must be estimated from either the basic statistics of the 
vehicle categories, that can be determined after classifying 
the extracted vehicles, or by using additional information. To 
overcome the errors in the true vehicle length estimation due 
to generalization or possible misclassifications, the actual 
length of the vehicles was determined by using scale 
information from imagery collected simultaneously with the 
LiDAR. Initial results have shown that combining LiDAR 
with complementary sensor data, such as simultaneously 
collected imagery, can provide a better base for velocity 
estimation and thus allows for more reliable traffic flow 
parameter determination. 

This discussion in a broader sense addresses the problem of 
mapping moving objects, which is an emerging field in 
geospatial science. Obviously, transportation, and in 
particular, traffic management needs this data, but 
rapid/emergency mapping also demand this type of 
geospatial data acquisition and processing. Our investigations 
provide an insight into the difficulty of mapping moving 
objects and clearly indicate that only multisensory systems 
can adequately solve the problem of collecting high spatial 
and temporal resolution geospatial data in a preferable highly 
redundant manner. 
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5 33 10 0.52 0.50 2.9 + 8.37 1.81 8.87 51 2.95 5.34 

12 33 10 0.48 0.50 4.0 + 10.52 2.01 10.52 81 2.83 5.69 

9 33 20 0.71 0.70 1.8 - 3.40 1.59 4.02 15 2.85 4.53 

            

11 50 10 0.40 0.40 6.1 + 9.40 1.99 9.48 95 2.83 5.63 

13 50 20 0.55 0.65 3.2 + 9.70 1.86 10.33 51 2.91 5.41 

14 50 20 0.58 0.60 2.8 - 3.68 1.85 4.13 22 2.85 5.27 

            

10 50 20 0.55 0.55 3.1 0 5.25 1.72 5.55 27 2.97 5.11 

            

4 70 10 0.35 0.35 8.2 + 7.85 1.90 7.95 120 2.89 5.49 

8 70 20 0.50 0.50 4.1 - 3.89 1.88 4.10 31 2.84 5.34 

          2.88 
          0.05 

Table 2. Vehicle length and width measurement from LiDAR and length estimation based on combined LiDAR and image data. 

Vehicle velocity computed from different vehicle length measurements [m/s] GPS velocity 

Using vehicle class 
length (4.7 m) 

Derived from LiDAR width 
using image ratio  

True vehicle length  
(5.55 m) 

S
tr

ip
 n

u
m

b
er

 

Velocity Difference Velocity Difference Velocity Difference 

Reference 

5 19.75 -3.90 21.22 0.59 25.71 2.06 21.81 

12 23.85 -4.16 23.18 0.59 27.93 -0.08 23.77 

9 33.31 -0.18 17.51 2.45 20.14 -13.35 19.96 

       

11 21.94 -4.58 21.48 0.73 26.79 0.27 22.21 

13 21.71 -2.77 22.45 0.94 26.16 1.68 23.39 

14 26.85 3.37 22.83 -4.82 14.64 -8.84 18.01 

       

10 2.85 -5.15 1.33 -1.26 5.22 -2.78 0.07 

       

4 15.15 -5.28 15.55 -0.08 20.75 0.32 15.47 

8 23.11 7.87 20.18 -1.03 11.28 -3.96 19.15 

4.14 0.58 0.88 
0.93 0.32 0.91 

Table 3. Velocity estimation performance for various sensor settings for LiDAR-only and for combined LiDAR and image data. 
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ABSTRACT 
 

This paper addresses vehicle velocity estimation methods based on aerial imagery and/or LiDAR. The 

precondition of the velocity estimation is the availability of vehicles, extracted, adequately described, and 

tracked, which can be accomplished from both data sources. In previous works, vehicle detection and 

tracking techniques were described for both data types. Tracked vehicles can serve as input to more 

complex processing tasks, such as estimating velocity profiles of individual vehicles or monitoring traffic 

dynamics in short term. The recent trend in airborne surveying, the simultaneous data acquisition of LiDAR 

with digital camera, however, allows for improved velocity estimation of moving targets by combining 

datasets acquired by the two technologies from the same flight. Both data are capable of providing velocity 

estimates, however, in varying quality. As their limitations and strengths are complementary, they can 

support each other and their fusion could lead to better velocity estimation. The objective of this discussion 

is to assess how the velocity of moving objects extracted over transportation corridors from LiDAR and 

imagery can be estimated.  

 

 INTRODUCTION 
 

A demand for finding new data sources in order to support and improve traffic flow monitoring and 

management inspired a research initiative on using remote sensed data in transportation.  Supported by the 

National Consortium for Remote Sensing in Transportation - Flows (NCRST-F) research efforts first 

focused on extracting traffic flow data from aerial and satellite imagery, see (Toth et al., 2003b; Grejner-

Brzezinska and Toth, 2002 and 2003b; Paska and Toth, 2004). Later, theoretical and practical studies were 

carried out on the feasibility of using LiDAR data to obtain traffic flow estimates, see (Toth et al., 2003a 

and 2004; Grejner-Brzezinska and Toth, 2003a). These papers describe methods for vehicle detection, 

extraction, and tracking from both imagery and LiDAR, which form the basis for traffic flow parameter 

estimation, such as vehicle count, classification and vehicle velocity estimates. Based on these experiences, 

the next step in research should be the fusion of results extracted from the two datasets, acquired 

simultaneously from the same flight. In this paper, the estimation of vehicle velocities from the two data 

types is discussed; the focus is on how the two data types can support each other in order to obtain better 

vehicle velocity estimates. More importantly, an accuracy assessment of the speed approximation is carried 

out. The analyses presented in the paper are based on a high-density (2-4 points/m
2
) LiDAR dataset and 4k 

by 4k digital imagery acquired on February 19, 2004, over the downtown Toronto area with the Optech 

ALTM 30/70 LiDAR system and DSS digital camera, respectively.  

 

TRAFFIC FLOW 
 

For highway planning and traffic management purposes, each road segment is characterized by its traffic 

flow. Flow can be defined as the number of vehicles passing a given point on a highway during a given 

period of time, typically one hour (vehicles per hour). Flow is one of the primary elements of traffic stream 

besides density, and speed. The three basic parameters of traffic stream are related to each other by the 

following equation: flow = speed x density. The two types of mathematical models for describing traffic 

flow are the macroscopic and microscopic models. While macroscopic models are concerned with 

describing the flow-density relationship for a group of vehicles, microscopic models describe the flow by 
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tracking individual vehicles using car-following logic. The relationship between flow and density is 

frequently used in freeway traffic management to control the density in an effort to optimize productivity 

(flow). The relationship between speed and flow could be used for design purposes as it defines the trade-

off between the level of service on a road facility (as expressed by the speed), and the productivity (as 

defined by the flow). Traffic control is aimed at managing and controlling the movement of traffic on 

streets, highways, and freeways in an attempt to optimize the use of such facilities. Traffic control service, 

in general, is responsible for collecting real-time traffic data from the field and then processing the data into 

useful information.  

 

Transportation represents a major segment of the world�s economy, and as such must be carefully 

monitored and planned, which requires the most up-to-date, accurate and continuous methods of screening, 

mapping modeling, and managing. The major focus of this research effort, in general, is to improve the 

efficiency of the transportation system by the integration of remotely sensed data with the traditional 

ground data to monitor and manage traffic flows. The research presented here is concerned with the vehicle 

extraction and traffic pattern modeling based on airborne digital data, collected by frame cameras and 

LiDAR systems. 

CONCEPT OF VEHICLE VELOCITY ESTIMATION FROM IMAGERY AND LIDAR 

In this section, the estimation of the vehicle velocity is discussed and suggestions for combining datasets 

acquired by the two technologies from the same flight are offered. Velocity, as already explained, is 

necessary for the traffic flow calculation, since the traffic flow is a product of the average vehicle velocity 

and the average vehicle density.  

 

Vehicle velocity estimation for the extracted vehicles requires adequate tracking data for imagery and 

precise timing for LiDAR data. When tracking a vehicle in a sequence of images, its position is computed 

for each image frame. From these data, the traveled distance between two epochs, defined in image 

acquisition time, and therefore average speed can be computed. The different characters of LiDAR imply a 

different approach in order to obtain vehicle velocity information. Vehicle speed estimation from LiDAR is 

based on the vehicle elongation/shortening of the moving objects that is due to the scanning mode of the 

data acquisition. Due to the continuous scanning of the LiDAR sensor and the motion of both the sensor 

and vehicles, vehicles appear distorted in LiDAR datasets. The relative motion between the LiDAR sensor 

and moving targets results in an elongated or shortened length of the vehicles. Some representative values 

of the elongated and shortened lengths of passenger cars that are sensed at typical sensor and vehicle 

relative speeds are shown in Table 1. The aircraft (LiDAR) speed was 55 m/s, and the car velocity was set 

to minimum and maximum freeway speeds. In this scenario, the LiDAR-sensed length of the passenger 

cars moving in the flying direction falls between 6 and 13 meters, and 2.5 and 4 meters for the cars that 

move against the flying direction.  

 

Parameters 

VLiDAR = 55 m/s 

VVEH MIN   = 20 m/s                s MIN = 4.36 m 

VVEH MAX = 32 m/s                s MAX = 5.23 m 

LiDAR-sensed length [m] True 

length 

Vehicle 

velocity Along Against 

s MIN VVEH MIN 6.85 3.19 

s MIN VVEH MAX 10.42 2.75 

s MAX VVEH MIN 8.21 3.83 

s MAX VVEH MAX 12.50 3.30 
 

Table 1. LiDAR-sensed lengths of passenger cars traveling on a freeway. 

 

Exploiting the relationship between the measured length and true length of the vehicle, the vehicle velocity 

with respect to the LiDAR platform velocity can be expressed with the following formula (1): 
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where (assuming constant speeds for short periods) Vvel_along / Vvel_against is the velocity of the vehicle 

traveling along/against the LiDAR flying direction, VLiDAR is the velocity of the LiDAR platform, m is the 

LiDAR-sensed vehicle length, and s is the true length of the vehicle. The LiDAR platform�s speed is 

known with high accuracy; the measured vehicle length from the LiDAR data may not be very accurate due 

to the errors in the vehicle representation. The actual vehicle size is unknown in practice, and thus, the true 

lengths of the vehicles must be estimated from the basic statistics of the vehicle categories, such as after 

classifying the extracted vehicles. Our earlier studies confirmed that all types of vehicles can be easily 

classified into three main categories, for example, passenger cars, multi-purpose cars, and trucks. 

Consequently, the actual vehicle length can be estimated as the average length within a category. Based on 

the statistics of the US vehicle market according to a study by Ramprakash (2003), the true length of 

passenger cars, for example, is between 4.36 and 5.23 m. To overcome the errors in the true vehicle length 

estimation due to generalization or possible misclassifications, the actual length of the vehicle must be 

determined from other sensory data, such as imagery collected simultaneously with the LiDAR point 

clouds. Though a single image does not provide the absolute size information, the image sequence 

formation preserves the relative object size information. Although an extra effort, such as using an adequate 

matching technique, is required to identify the identical vehicles in the two datasets, the combination of the 

two datasets could eventually lead to an improved velocity estimation of the moving vehicles. 

 

Figure 1 shows extracted vehicles from LiDAR data as they are overlaid on an orthoimage. LiDAR vehicle 

points are represented in green and red, corresponding to the motion along or against the flying direction, 

respectively. For referencing, some static objects, such as one point on the centerline and points at the 

guard rail, are also marked in the figure. This figure illustrates: (1) the elongated (when vehicles moving 

along the flying direction) and shortened (when vehicles moving against the flying direction) lengths of the 

moving objects, and (2) the relationship between corresponding vehicles on the imagery and in the LiDAR 

data. The matches of the corresponding vehicles in the two datasets are highlighted by rectangles with 

identical colors. Due to the different nature of the two data acquisition techniques, continuous scanning 

mode of the LiDAR sensor and instantaneous capturing of the imagery, the geo-locations and also the 

shapes of the corresponding vehicles differ in the two datasets. The white triangle in Figure 1 shows the 

approximated location of the LiDAR beam when the image was taken. 

 

Vehicles can be sorted into four categories based on their direction and the relation of their positions in the 

LiDAR and imagery data: (1) vehicles traveling along the flying direction and scanned before the image 

acquisition (in Figure 1 they are in the upper lanes and right from the triangle sign), (2) vehicles traveling 

along the flying direction and scanned after the image acquisition (in Figure 1 they are left from the triangle 

sign), (3) vehicles traveling against the flying direction and scanned before the image acquisition (in Figure 

1 they are in the lower lanes and right from the triangle sign), and (4) vehicles traveling against the flying 

direction and scanned after the image acquisition (in Figure 1 they are left from the triangle sign).  

 

Direction of 
vehicle

Vehicle scanned Vehicle in LiDAR data 

Along Before  

Against Before  

is behind the corresponding 

vehicle on image 

Along After 

Against After 

the image 

acquisition is in front of the corresponding 

vehicle on image 

Table 2. Relative positions of corresponding vehicles in imagery and LiDAR data. 
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       (a) 

            

                                           (b)                                         (c) 

Figure 1. Vehicles extracted from the LiDAR data and overlaid on the orthoimage;  

match of corresponding vehicles in the two datasets is marked with identical colors (a);  

also shown are vehicle elongation (b) and vehicle shortening (c). 

 

Note that the LiDAR point clouds of the vehicles fall in front of the corresponding vehicles on the left side 

of the blue dotted line, and behind the corresponding vehicles on the right side of the line, as the LiDAR 

measured the vehicle either before or after the image was taken. Table 2 describes the corresponding 

vehicles� relative positions acquired by the two data types. Based on the known relative positions of 

corresponding vehicles, search areas for a matching procedure can be determined. The acquisition time of 

each LiDAR point as well as the image capture time is recorded in GPS seconds. The possible relative 

distance between the image and LiDAR vehicle positions could be calculated from the vehicle velocity and 

the acquisition time of the image and the LiDAR vehicle points (coarse vehicle velocity approximations 

could be obtained from vehicle velocity computation from image sequences or the minimum and maximum 

speed limits of the actual road type and so on). Note in Figure 1 that the relative distance between 

corresponding vehicles is getting bigger the farther of the triangle sign; similarly, the difference between 

the data acquisition time of the LiDAR sensor and digital camera is getting also larger. 

ACCURACY ASSESSMENT OF THE VEHICLE VELOCITY ESTIMATION  
FROM THE COMBINED DATASETS  

In order to assess the accuracy of vehicle velocity estimates from the combined datasets, we have to 

investigate the accuracy of the various components which are based on equation (1), the velocity of the 

LiDAR platform, the LiDAR-sensed vehicle length, and the true length of the vehicle. The LiDAR 

platform�s speed is known with high accuracy; in the calculations they are considered as fixed values. The 

measured vehicle length from the LiDAR data (m) may not be very accurate due to the errors in the vehicle 

representation, and thus is considered with σm standard error. The accuracy of the true vehicle length 

derived from image measurements simply depends on the accuracy of single ground point determination 

from imagery. In the following, the accuracy of size parameter estimates from imagery and LiDAR data is 

discussed. 
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Accuracy of single ground point determination and vehicle size estimation from imagery
 

In our approach to extract vehicles from imagery, see (Toth et al., 2003b; Paska and Toth, 2004), the 

detection begins with image orthorectification, which produces good starting data for all the vehicle 

extraction and tracking processes. The orthoimagery provides advantages in many respects. First, by 

overlaying and subtracting images it makes easy the identification of moving objects from the images 

(vehicles on road surface). Second, since orthoimages are scaled to object scale, vehicle envelopes can be 

compared to actual dimensions making vehicle extraction more robust.  

 

For orthorectification, exterior orientation parameters of images are usually provided from the GPS/INS 

solution. Once the image georeferencing is known, the images are orthorectified by using available DEMs, 

such as existing USGS DEM or in the case of simultaneous data acquisition of LiDAR with a digital 

camera, LiDAR will provide good quality, up-to-date elevation data. However, LiDAR provides a true 

DEM within its accuracy specifications only for stationary objects; moving objects appear distorted in the 

data set due to the facts described in the previous section. 

 

The accuracy of single ground point determination was analyzed by error propagation assuming 

that all systematic errors have been removed a priori. 

 

3 (c, x0, y0) IO (Interior Orientation) parameters 
6 non-linear distortion parameters 

3 positions (X0, Y0, Z0) 
EO (Exterior Orientation) parameters 

3 rotation angles (ω,ϕ,κ) 

Boresight alignment between sensors 

(IMU and camera frames) 
3 rotation angles (ωb,ϕ b,κ b) 

DEM Elevation data of the surface (Z) 

Table 3. Required parameters to describe the mathematical relation between image and ground coordinates 

by single photo resection. 

 

The accuracy of the ground coordinates of any objects determined from an image depends on the accuracy 

of the parameters shown in Table 3. The errors associated with each quantity will contribute to the error in 

the ground coordinates. The well-known collinearity equation (2) is used to propagate the uncertainties of 

the parameters to the data. 
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where (x,y) are image coordinates, interior orientation parameters applied (x0,y0 and distortion), (X,Y,Z) are 

ground coordinates of the object, c is the focal length, (X0,Y0,Z0) are the ground coordinates of the camera 

center, rij are the elements of the rotation matrix calculated from the camera attitude angles (boresight-

corrected navigation angles). 

 

The general error propagation for a function of n variables is given below (equation 3) provided that the 

various variable errors are independent. 
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The partial derivative ∂wi/∂vn represents the change in the computed value wi with respect to the measured 

value vn, and σVn represents the standard error assigned to the measured value. In the more general matrix 

format (4), where no assumption is made about variable correlations:  
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where )(vD is the dispersion matrix, which contains the covariance (second moment) among all measured 

elements, A is the design matrix, and )(wD  gives the variances/covariances of the final results. The design 

matrix when calculating the accuracy of the ground coordinates of any objects determined from an image 

by single photo resection is given by (5). 
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Table 4 contains the typical accuracy range of the navigation, boresight, and interior parameters with their 

accuracy taken from calibration reports. In the following calculations, the accuracy parameters listed in 

Table 4 were considered. 

 

Camera Accuracy 
Position 5 � 20 cm Navigation errors 

(Applanix POS AV Model 510) Attitude 10 � 30 arc sec 

Boresight misalignment (Omega, Phi, Kappa) 10 � 30 arc sec 

Focal Length 

(54.969 mm) 
9 µm 

Errors in interior orientation 

parameters 

(DSS) Principal Point 4.5 µm, 4.5 µm 

Errors in image coordinate 

measurement 
 2 � 5 µm 

Table 4. Accuracy of the orientation parameters and image coordinate measurements. 

 

Table 5 shows the accuracy estimates of ground coordinates for two typical image point locations of the 4k 

by 4k image for various navigation and boresight misalignment errors, and for a common image 

measurement accuracy, focal length, and DEM accuracy. The size parameter is computed as the distance 

between two points given by their XY ground coordinates (assuming the road is horizontal). The accuracy 

of the size parameter estimation calculated by error propagation for different scenarios is included in Table 

5. In the worst scenario, a 37-cm accuracy can be expected for the size parameter. In an average case, about 

20 cm accuracy of the size estimation can be assumed. 
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Accuracy of
Navigation errors 

Boresight 
misalignment 

DEM 
(LiDAR) 

Image 
coordinate 

measurement 

Focal
length positioning size 

x = 0 

y = 0 

[mm] σ Position 

[cm] 

σ Attitude 

[arc sec] 

σOm,phi,ka 

[arc sec]

σ Z 

[m] 

σ x, σ y 

[µm] 

σ c 

[µm] 

σ X 

[m] 

σ Y 

[m] 

σ Y 

[m] 

5 10 10 0.30 5 9 0.08 0.08 0.11
10 20 20 0.30 5 9 0.13 0.13 0.18

H = 

500 

[m] 20 30 30 0.30 5 9 0.23 0.23 0.32
 

Accuracy of
Navigation errors 

Boresight 
misalignment 

DEM 
(LiDAR) 

Image 
coordinate 

measurement 

Focal
length positioning size 

x = 

15.36 

y = 0 

[mm] 
σ Position 

[cm] 

σ Attitude 

[arc sec] 

σOm,phi,ka 

[arc sec]

σ Z 

[m] 

σ x, σ y 

[µm] 

σ c 

[µm] 

σ X 

[m] 

σ Y 

[m] 

σ Y 

[m] 

5 10 10 0.30 5 9 0.12 0.08 0.17
10 20 20 0.30 5 9 0.17 0.13 0.23

H = 

500 

[m] 20 30 30 0.30 5 9 0.26 0.23 0.37
 

Table 5. The accuracy estimates of ground coordinates of two typical image point positions, and the 

distance estimate (size) parameter estimation for different scenarios. 

 

 

Uncertainties in size-parameter estimation from LiDAR data
 

The measured vehicle length from the LiDAR data may not be very accurate due to the errors in the vehicle 

representation: (1) the LiDAR pulse footprint size is not negligible, thus, the accuracy of the actual edge of 

the vehicle footprint determination depends on the size of the LiDAR footprint, (2) LIDAR point density; 

the distance between the points on the ground limits the accurate length estimation, and (3) the shadow 

effect, which does not influence the length parameter estimation directly, makes the vehicle orientation 

more ambiguous and the width parameter estimation less accurate. For examples illustrating these 

problems, see Figure 2. 

 

(a) (b) 

 

Figure 2. Limitations in accurate parameterization of LiDAR-sensed vehicles: (a) data density and 

footprint size, (b) shadow effect. 

 

Obviously, the denser the data the less uncertainty the vehicle length measured in the LiDAR data. When 

deriving the formula for vehicle velocity estimation, the assumption is made that the length of the vehicle is 

measured continuously by the sensor moving above the object. However, LiDAR measurement provides 

discrete points at some spacing, thus, resulting in an inaccuracy of the LiDAR-sensed length parameter.  
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Vehicle velocity estimation

The accuracy of the vehicle velocity estimation based on equation (3) is given by (6),  
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where VLiDAR is the velocity of the LiDAR platform, m is the LiDAR-sensed vehicle length, and s is the true 

vehicle length; σVveh  , σm  and σs  are the accuracy of the vehicle velocity, LiDAR-sensed vehicle length, 

and the true vehicle length, respectively. 

 

Figure 3 shows the standard deviation of vehicle velocities computed by equation (6) at different LiDAR-

sensed lengths using the parameters listed in Table 6. 

Figure 3 s [m] σσσσs [m] σσσσm [m] Line color 
5 0.30 0.30 Green 

5 0 0.30 Red (a) 

5 0.30 0 Blue 

4.3 0.30 0.30 Green 
(b) 

5.3 0.30 0.30 Magenta 

4.3 0 0.30 Red 
(c) 

5.3 0 0.30 Magenta 

4.3 0.30 0 Blue 
(d) 

5.3 0.30 0 Magenta 

5 0.10 0.30 Green 

5 0.20 0.30 Red (e) 

5 0.30 0.30 Blue 

5 0.10 0.10 Green 

5 0.20 0.20 Red (f) 

5 0.30 0.30 Blue 

Table 6. Summary of parameters considered in the computation of the standard deviation of vehicle 

velocities at different LiDAR-sensed lengths 

 

From Figure 3a we can conclude that the vehicle velocity accuracy is more sensitive for the uncertainties of 

the size parameters at the shorter LiDAR-sensed lengths, i.e., the uncertainties in the size parameters (true 

vehicle length and LiDAR-measured length) has less impact when the LiDAR-sensed length is longer. The 

accuracy of the velocity estimation is better for vehicles traveling along the direction of the sensor motion, 

as their LiDAR-sensed measure is relatively long. In a similar way, if the car is traveling in the direction 

opposite of the LiDAR, its velocity estimate would be more accurate for lower speeds, since the shortening 

effect will be less severe. Moreover, uncertainties in the actual vehicle size have larger effects at the longer 

LiDAR-sensed lengths than that of the inaccuracy of the measured vehicle size, which rather increase the 

inaccuracy at the shorter LiDAR-sensed lengths. Figures 3b and 3c show that longer true size vehicles have 

bigger standard errors. Figure 3d illustrates that the true vehicle length would not affect the accuracy of 

velocity estimation if the LiDAR-sensed length estimation could be considered fixed. Figures 3e and 3f 

illustrate how the accuracy increases with decreasing uncertainties in the size parameters. 
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Figure 3. Accuracy of vehicle velocity estimation at different LiDAR-sensed vehicle length for scenarios 

summarized in Table 6. 
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CONCLUSION 

Vehicle velocity estimation from LiDAR is based on the vehicle elongation and shortening of the moving 

objects due to the scanning mode of the data acquisition. The accuracy of vehicle velocity estimation 

depends on the vehicle�s direction, true length, velocity, and on how accurately the true and LiDAR-sensed 

vehicle length could be estimated. The actual vehicle size is unknown in practice, and thus, the true lengths 

of the vehicles must be estimated from either the basic statistics of the vehicle categories, such as after 

classifying the extracted vehicles, or using additional information. A feasible approach to overcome the 

errors in the true vehicle length estimation due to generalization or possible misclassifications is if the 

actual length of the vehicles is determined from other sensory data, such as imagery collected 

simultaneously with the LiDAR. Our results have shown that combining LiDAR with complementary 

sensor data, such as simultaneously collected imagery, can provide a better base for velocity estimation, 

and thus allows for more reliable traffic flow parameter determination. 
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APPENDIX C 

1. I_FLOW program installation instructions. 

2. I_FLOW User’s Manual. 

3. I_FLOW executable and source code (only electronic version). 
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I_FLOW Installation Instructions 

The source code of the L_Flow program is MATLAB. Therefore, the executable version 
of the program, L_Flow.exe, needs the support of MATLAB program. To install the 
software, you should install the MATLAB compiler in advance. About 300 Mb of space 
on the C:\ drive is required to install the MATLAB compiler. Please follow the below 
steps to set up the program: 

1. Create a folder with the name [MCR] in C:\  

Fig. 1: Create a folder in the C:\ root 

2. Copy the files of the CD on this folder 

Fig.2: The files are transferred from the CD to the specific folder 

3. Run MCRInstaller.exe from C:\MCR directory 

This file extracts all procedures needed to compile the MATLAB commands. By 
appearing a window with the logo of MATLAB, follows the below steps. 
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Fig.3: The first step of install the MATLAB compiler 

Press Next bottom three times. 

Fig.4: Press [Next] bottom in all appear windows 

It takes about 5 minutes to install. After it, you can press [Close] bottom. 
You are done. 

Fig.5: It takes about 5 minutes to install …  
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4. Run L_Flow.exe. The program is ready to run. Please return to the manual to 
learn about better handling the program. 

Fig.6: Run the L_Flow.exe to execute the program 

59



Introduction

The L-FLOW is the software designed in the Center for Mapping, The Ohio State 
University to process the LiDAR data and estimate traffic parameters in terms of density 
and flow. It is supposed that the Lidar data is captured over a single transport corridor, 
and the prime object is to derive transportation features such as road and vehicles from it. 

Our robust method for semi-automatic road extraction is based on supporting centerline 
information. This kind of information can be provided by either road spatial databases or 
user interaction. Vehicle extraction, vehicle modeling, vehicle classification and velocity 
estimation are the other paces achieved afterward to estimate traffic parameters. As 
conclusion, the main goal of this system was to overcome file size limitation, improve the 
efficiency of automated data segmentation, and provide robust solution for traffic 
parameters estimation.  

This document which is divided into eight sections is designed to help the user learn to 
handle the input files, run the program, and manipulate the different procedures. Section 
1 discusses the way of selecting the input files. Section 2 deals with checking the 
consistency of input files including all components needed to check before running the 
program. Section 3 illustrates the graphical representation of the data. The procedures of 
road extraction are explained in section 4. Section 5 discusses vehicle extraction and 
vehicle modeling algorithms. In section 6 and 7, the methods used to classify vehicles 
and estimate velocity are discussed respectively. In the last section, 8, the procedures of 
estimating the traffic parameters in basis of the results of the preceding steps are 
discussed.  

For quick reference, a list of corresponding macros is included in the appendix I 
Moreover, a list of the tips is marked for almost all of the contents. These tips highlight 
the detailed descriptions of procedures and help to interpret and handle the program.  
Besides this manual in which we have explained the operation aspects of the program, the 
user can always use the paper reference. This reference is meant explaining intensely the 
theoretical background of each procedure in the framework. 
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1. User input files  

The system is launched by executing the L_Flow.exe file. The user needs to load three 
files to execute the program: the LiDAR point clouds, the LiDAR intensity, and 
centerline files.  

LiDAR point cloud (XYZ) 

The XYZ file should be an ASCII file in 3*),,( nZYX  format.  

The LiDAR elevation files are distinguished by *.xyz extension
There should be no blank or incomplete lines in the chosen file 

Figure 1 : Input point cloud file (XYZ) 

LiDAR intensity data (XYI) 

The intensity file should be an ASCII file in 3*),,( mIYX  format.  

If there is no intensity information, press [Cancel] to go to the next step 
The program considers advertently the intensity information as independent data 
The LiDAR intensity files are distinguished by *.xyi extension
There should be no blank or incomplete lines in the chosen file 

Figure 2 : Input intensity file (XYI) 

Centerline points (CLP) 

The centerline file is an ASCII file of either 2*),( rYX  or 3*),,( rZYX  format.  
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The centerline files are distinguished by *.clp extension
If the centerline (CL) points are 2D, the program turns them to 3D automatically 
There should be no blank or incomplete lines in the chosen file 

Figure 3 : Input centerline file (CLP) 

2. Basic processing 

Once the input files are selected, the consistency between LiDAR data and centerline file 
is checked. Despite of LiDAR data, point cloud and intensity, the centerline data is likely 
to exhibit more inconsistencies. To this end, the input centerline file is checked from 
different aspects, because our semi-automatic road extraction algorithm works by 
supporting centerline data. 

Two options are proposed to supply the centerline file. The first one is to use the road 
spatial database, which is available for most of main highways and freeways in The 
States. The second one is user interaction by which a user inputs the seed points of a 
road. Generally, the centerline points should be drawn with accuracy better than 1 m, and 
be ordered in the file properly.  

A warning message is appeared If the XYZ and CL data do not cover each other

Figure 4:  A warning message for unmatched input files 

To save the process details, the user can enter a name. In else, the entire process is 
saved in the default file [Report_1.txt]. 

Figure 5: The report of the system is saved in  

2.1 Point cloud resolution

The point cloud resolution, Fig. 6, is represented by two terms: the horizontal and vertical 
components. These parameters are lately used in setting different thresholds. 
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Figure 6: Point distribution and resolution terms 

2.2 Alignment of the centerline points 

The centerline points should be ordered properly. Fig 7 shows an example where the CL 
points are located improperly. The other common problems are wrong point number and 
wrong point coordinates, which should be fixed by operator ahead. 

For any misalignment, the location and number of the wrong CL point is reported 
The operator should fix the wrong point in the CLP file manually 

Figure 7 : The centerline points should be aligned  

2.3 Minimum distance betw een centerline points 

Once the user inputs seed centerline points, these points are manipulated in order to 
provide sufficient number of CL points along seed points. Small distances between CL 
would make the algorithm extracts road segments with high curvature; however, for 
highways or freeways with moderate curvature, a large distance may be allowed. If the 
distance is less than that the system requires, new points are interpolated and added to the 
CLP file. The experiments indicated that the distance between 10-15 m is sufficient for 
handling high curvature roads by considering processing time. 

The minimum default distance is 10 m. The operator can change this value in the 
macro [Control_CL_Points]

Figure 8:  More centerline points need to be added to the CLP file 
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2.4 Determine the optimum num ber of centerline points 

If the distance between centerline points is less than that the system requires, some of the 
selected points are eliminated from the CLP file.  Fig. 9 shows an example in which the 
excess CL points are eliminated from the final list. 

Figure 9:  The extra points remove from the CLP file 

2.5 Centerline projection 

If centerline points are presented in 2D, they are projected into 3D.  

After fixing the centerline points, a new CLP file is recorded by the name of 
[CLP_filename_fix.clp] on the same path. Next time, by calling the old CLP file, the 
system automatically loads the new CLP file. 
For large data set, the interpolation process is time consuming. However, once the CL 
points are projected, they are saved in the new CLP file.
Fig. 10 shows a sample output up to this point. 

Figure 10: A prototype output

3. Graphical representation of the input data 

There are usually several outlier points in the XYZ data, and particularly in the 
elevation component, which prevent proper displaying of the data. Visual assessment 
is the best way to check these points. The proper graphical representation of the data 
is ready, after detecting and deleting these points. A simple filter based on average 
and standard deviation of the centerline elevation component, ( Z , Z ), Eq.1, is used 
to detect and remove the outlier points:

ZZiZif *3 Point (i ) is probably an outlier point (1)

If the graphical representation shows some more outlier points, adjust the filter by 
changing the threshold e.g. ZZ *2 . The operator can adjust the filter in 
the macro [plot_XYZ_CL] 
centerline points are superimposed on the main figure 
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 The Intensity data is not shown anywhere on the figure 
The graphical handling of oversized data sets is almost impossible. Consequently, 
for such a data set, the road area is just plotted.
The graphical window is supported by MATLAB program. For more information 
about view utilities check the MATLAB help. 

By proper displaying of data, Fig. 11, it can be concluded that everything is fine and it is 
time to arrive at the first step of traffic parameter estimation. The first stage is started by 
delineating the road surface from which vehicles can be extracted. To speed up traffic 
parameters estimation, particularly for long road lengths, an option, [Approximate], is 
proposed besides precise procedure [Precise]. As it can be comprehended, in the 
approximate mode, the road object is extracted and modeled approximately. This rough 
road modeling is reduced considerably the time of processing the data. i.e. from 1 hour to 
1 min. 

Figure 11: Graphical environment

By choosing the [A] or [P] mode, the computations carry out in the individual way, but 
with the same methodology
In [A] case, it can be expected obviously to have a rough estimate of traffic parameters 

4. Road outlin e extraction 

The road extraction algorithm is followed in two steps. In the first step, by exploiting 
centerline information, the XYZ data is segmented into two groups: a road group and a 
non-road group. In the second step, throughout the road group, the LiDAR scanlines 
which are represented roughly the cross profiles of the road are used to extract edges of 
the road.

   If the road boundaries are calculated earlier, the operator can enter [Y] and skip this step

   The road boundary file is saved as [XYZ_file_name.rdb] in the same path 
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4.1 Rough estimation of  the road boundary 

In conjunction with the forward movement of the aircraft, a wide strip of terrain is 
scanned as a result. The volume of this data is generally in the range of several 
megabytes, depending on the project size. This extent of data usually covers a vast area 
around the road surface; however, it is only the road surface which is important for us. 
Therefore, the first step of road extraction algorithm is approximation of the road location 
support centerline information. There are basically two ways to provide the 
approximation. First is using the intensity information, and second is using the XYZ data. 
Traditionally, intensity information has not been used in feature extraction from LiDAR 
data because of noisy of data.  Therefore, the intensity can be used to derive roughly the 
road object whether the topography of the region is high and highways don’t pass over 
one another. The second method is based on a geometry criterion in which a low order 
plane is fitted to the data.

Technically, the road region is searched throughout the area about 35 m, around the 
centerline axes.
 If the road width is more than 35 m, the operator should change this threshold in the 
macro [Road_Coarse_Plane_Fitting]
If the area is too smooth, there is no chance to estimate properly the road edges by 
analyzing the elevation data. In case the intensity data are available, the program 
switches to use the intensity information
The result of intensity segmentation is not provided at once,  more filtering are 
achieved to refine the classification as in Fig. 12
The approximate road width is important in our algorithm. If this approximate is not 
calculated correctly for any reason, the operator can always enter the correct value 
while the program is running as Fig. 13

Figure 12: The intensity information could segment the road surface 

Figure 13: A prototype message about confirmation of approximation  
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4.2 Scanline and cross profile formation 

Basically the LiDAR scanlines represent the cross profiles of a road if the flight is 
parallel to the road direction. Otherwise, for reasons such as unparallel flight or breaks in 
the data, Fig.14, the cross profiles should be extracted from data. In both cases, the 
approximate road width bounds the profile length, and, the entire approximate road 
surface is finally covered with scanlines and interpolated cross profile as a wire-frame 
object. The intersection point of the centerline axis and each profile is split the profile to 
the left and right profiles. The next step is extracting road edges, median part and 
shoulder part, from these profiles. 

Figure 14:  LiDAR scanlines may break and sweep irregularly road surface 

Cross profiles are typically perpendicular to the CL axes 
If the angle between a scanline and CL axes is lower than a threshold, plus, the number 
of the scanlines are larger than a threshold, the program uses the scanline profile to 
estimate the road features after compensating the angle influence
If this angle is higher than the threshold, or the numbers of the scanlines are not 
sufficient to demonstrate the road surface on that particular pair of CL points, the 
program switches to interpolate cross profiles for just that CL segment. In addition, the 
numbers of those CL points are printed as Fig.15. For example, in this sample cross 
profiles are derived through CL pair, 9-10, 16-17, and 17-18 
In case of interpolation, the distance between cross profiles is determined by data 
resolution
The interpolation of the cross profiles is very time consuming � 

Figure 15: This message shows that cross profiles are interpolated for a pair of CL points

4.3 Road edges extraction 

The median and shoulder locations are extracted from profiles by a technique called line 
fitting. In this procedure, a line with adaptive length is fitted to the points along each 
profile. This line shifts along the profile with a step corresponding to data resolution. To 
extract the road median, this line is moved from the inner part of the profile to the outer 
part, while for extracting the shoulder the line is moved from the outer to the inner edge 
in order to disregard all kinds of obstacles on the profile. The profiles are also smoothed 
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temporarily by a low-pass-filter to reduce effects of undesired objects as vehicles. 
Thereafter, the road edges are revealed based on analyzing the fitting error as if the line 
with the minimum fitting error and the semi-horizon attitude determines the road edge 
with accuracy better than data resolutions. 

This algorithm is successful in extraction road edges only if the profiles closely represent 
the prototype of the road cross profile. But, there are lots of obstacles such as vehicles, 
natural variation, and objects on the road surface that violate this assumption. Fig.16 
illustrates profiles with some toothed patterns due to these obstructions. This kind of 
problem is tried to fix by smoothing the profile, but there are also other situations in 
which the road edges are calculated inaccurately. Any miscalculation can be considered 
as a shift respect to centerline axes.   

Figure 16: Scanlines represented the natural cross profiles  

These shift edges are tracking and fixing in three steps. The first concern is that the road 
width, the distance between road median and road shoulder, is supposed to change 
gradually between each pair of centerline points. Therefore, the width between each pair 
of centerline points is almost kept invariable in order to not satisfy our assumption, but to 
bridge all possible miscalculations. By this way two average values, road median and 
road shoulder, are reported for each pair of centerlines as local width. The next concerns 
are dealing with observing the integrity of the whole road. Fig. 17 shows the overall 
problem: 

Figure 17:  Adjust the road width

Road shoulder Road median edge 

mProfile Width 
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As can be seen in Fig. 17, there are still a few local road widths in terms of median and 
shoulder locations which are out of the range (CL number: 4, 8, 9, 12, 27, 28). The 
second concern is detecting these outlier estimations. By statistical analysis of the 
residuals, the values which are out of a defined range, adaptive threshold, are detected 
and substituted with an average value based on the neighboring estimations. Finally, a 
low order polynomial smoothes the road edges and provides a continuous form for road 
boundaries. Totally, the road boundaries of the right and left side are four smooth curves, 
median and shoulder edges on each side, which are printed and saved in road boundary 
file.

The road edges on the Right/Left [R/L] sides are drawn with red and blue color 
respectively as Fig. 18 
The [R/L] side of a road is defined conventionally in basis of the order that the 
centerline points are setting up. 
The program saves the road edge results automatically at the file distinguished by 
[XYZ_file_name.rdb] on the same path.
If the road is estimated in [A] or [P] mode,  it is also saved with different name that is 
familiar for the program 
Once the road boundary is calculated, it can be always loaded to avoid running this 
procedure again (Section 4) 

Figure 18:  The road edges; right side with red color, and left side with blue color

5. Vehicle Extraction 

After extracting the road surface, the right and left sides of the road, Fig. 19, delineate 
two regions from which the vehicles can be extracted. Vehicles, in the LiDAR context, 
are considered as structural objects having elevation higher than the local road surface. 
Therefore, our vehicle extraction algorithm is based on several rules established our 
knowledgebase system: 

A rational relative height with respect to the road surface 
Alignment with road direction 
A logical distance respect to the median edge 
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Semi-rectangular shape 
Non-relationship with other objects 
Appropriate size (length, width, area, and volume) 

Several steps are performed to detect and shape discrete point clouds into vehicles. 

If the vehicle procedure is performed before, the operator can load it and skip this step 

Once the vehicles are extracted, a vehicle file is saved by the name of [XYZ_file_name.car]
on the same path 

Figure 19:  Road surface is ready to extract the vehicles

5.1 Search the candidate vehicle points 

An adaptive elevation filter, in basis of plane fitting technique, regularly searches the 
road surface throughout a virtual grid covering the road area, and detects highest points in 
each cell. Our strategy to detect merely highest points in each grid is meant extracting 
those points belonging to vehicles confidently.  

As shown in Fig.20, the grid cells are laid perpendicular to the centerline axes and 
extended to the road edges from each side

Figure 20: Searching regularly the road surface and detecting raised points 
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5.2 Cluster the raised points 

To distinguish the raised points as individual vehicle object points, these points should be 
clustered. The clustering procedure is pursued in two steps. First, the clustering begins 
from each grid cell through the neighboring cells, and second, the clustering searches the 
further cells adaptively. The last one is adaptive because it is carried on by checking 
several factors in basis of our knowledge based instantaneously. After these steps, all 
points have a label and belong to an object as Fig.21.

Figure 21:  The raised points merge logically and shape individual objects 

5.3 Shape the cl uster objects 

In order to clarify the points certainly belong to the vehicles, the highest points 
throughout the grid cells were derived and clustered (Fig.21). However, besides these 
points, there are also other points which should be added to the cluster to form a vehicle. 
To shape the vehicles, the vicinity of each cluster object is enlarged as Fig. 22. This new 
region sets up a new search area from which the shape of a vehicle can be “cast”. This 
goal is addressed in the following stages: 

Figure 22: The new vicinity is searched for all points shaping a vehicle 

Polish the area 

Polishing term in this context is meant to exploit a structural frame from the points in the 
new search region. To figure the frame out, an adaptive threshold is used to assess the 
elevation difference between each point and the local road surface. Whether the 
difference is more than that threshold, that point is considered as vehicle points.  

Although by comprising all these points for an object, there are still some other points 
that shape the entire points set as a vehicle. These points, technically, are not reflected 
from the car. So far, the location of these points is on the intersections of the vehicle sides 
and the road surface. The cross profile analysis of the region can expose the location of 
these points. Fig. 23b illustrates the final form of a vehicle which is exploiting from the 
search area.  
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Figure 23:  The enlarged area is polished to shape a vehicle 

Remove non-vehicle objects 

Through all previous processing, there might be several non-vehicle objects extracted and 
modeled. Based on our experiments, these objects are usually generated close to the road 
edges, Fig. 24. Analyzing the parameters such as width, length, area, volume, or intensity 
could also help to detect these objects.  

An ordinary vehicle is recorded with the width about  0.3 � 4  m,  length  0.7 � 50  m, 
and  volume 0.5 - 1400 m3

Figure 24: Controlling the vehicle attributes could detect the non-vehicle objects 

Clean the duplicated and intersected vehicles 

If several vehicles move close to each other, the algorithm might identify them as overlap 
or intersected vehicles, Fig 25. Therefore, the last step is specified to deal with detecting 
and fixing these kinds of objects.

If there are a couple of vehicles with relative distances less than data resolution, at 
least one of these vehicles would be advertently disregard so that there be individual 
vehicles
The program saves automatically the vehicle extraction results in a file distinguished 
by [XYZ_file_name.car] on the same path. This file can be loaded as vehicle file 
(Section 5) 

Figure 25: The overlaid objects are cleaned in the last step 
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6.  Vehicle Classification 

Four categories are chosen to classify the vehicles: passenger car, 3-axle-truck, 6-axle-
truck, and other (multi purpose vehicle). The parameters used to set the object space up 
include length, width, area and volume called the vehicle parameters. A Principle 
Component Analysis, PCA is preferred to classify the vehicles. The feature space 
provided by PCA segments the vehicle parameters into four classes. 

The classification performance was tested on different data sets using different 
coefficients. The results of these experiments determine the best coefficients in 
classification: Passenger<20, 20< MPV<60, 60<3-axle-Truck<140, and 6-axle-Truck > 140.
The operator can always adjust these coefficients while the program is running as Fig.26. 
Fig. 27 shows the windows appeared after adjusting the new values. In this window the 
PCA feature space is plotted, and the operator can manually adjust the desire values. 
However, it is not recommended to change these coefficients if there is no apparent 
change in the system parameters. 

Figure 26: The operator can enter the new values for PCA coefficients 

Figure 27:  classification of the vehicles into four groups based on PCA 

The passenger cars, P, are plotted by cyan color (Fig. 28)
The MPV vehicles, M, are plotted by white color (Fig. 28)
The mini-trucks, B, are plotted by magenta color (Fig. 28)
The trucks, T, are plotted by yellow color (Fig. 28)
Changing the PCA coefficients affects directly the vehicle velocity procedure
The vehicle attributes and vehicle point coordinates are printed, and saved at a file 
distinguished by [XYZ_file_name.veh] on the same path. The vehicle points are 
recorded in two forms: the raised points of the vehicle and all points shaping it 
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Figure 28:  classification of the vehicles into four groups based on PCA 

7. Velocity estimation 

During data capturing, due to the continuous scanning of the platform, the vehicles record 
shorter or longer than their original size depending on the relative motion direction. This 
variation helps us to determine the vehicle velocity. Through the four vehicle categories, 
the passenger cars and trucks have almost known size. Therefore, velocity estimation 
algorithm is in based on analyzing the passenger and truck size variations (particularly 
the length component). Apparently, if there were no passenger or truck vehicles, the 
velocity couldn’t be estimated. Indeed, besides the length, there are several other 
information needed to estimate the general velocity value: 

The average length and standard deviation of passenger car market share in The 
USA is about: mm 35.0,68.4
The average length and standard deviation of truck market share in The USA is 
about: mm 2,23
The individual speed of each vehicle is usually not of interest, as mainly the 
average velocity of a group of vehicles is needed to obtain traffic flow data 
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LiDAR platform direction 

As it can be seen from Fig.29, the average azimuth derived from coordinates of middle 
points of scanline is used to estimate the platform direction. The yellow points on the 
Fig.27 indicate the location of middle points of the scanlines in the instance.

Figure 29:  The LiDAR platform direction 

Alongside direction

Provided the sensor flies parallel to the road, on the alongside direction the vehicles 
appear longer than the original size. Consequently, a simple evaluation of the average 
lengths of a prototype car passing on the two sides of the road, Fig. 30, can expose the 
alongside direction.  

Statistically, a hypothesis test confirms the meaningful of average lengths
The truck sizes is also confirmed the alongside direction
To visualize the alongside direction If the alongside direction is on the right side, 
the color of the centerline points is chosen as red color, and for left side, the color 
will be turned to blue (section 4.3) 
There might be cases in which there is no passenger car or truck on one of the 
road side. In this case, the alongside direction cannot be estimated [R/L]. Under 
this situation, the velocity still can be estimated.

Figure 30:  The alongside direction is determination in basis of average length 
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Intersection angle of pla tform and vehi cle directions 

The angle between platform (or scanline) and vehicle affects the velocity magnitude. As 
can be seen from Fig 31, if the platform flies parallel to the road direction, the 
intersection angle is almost appeared as a right angle. Fig. 32 shows another sample data 
with information needed to calculate the intersection angle. 

Figure 31:  Intersection angle (deviation from right angle) 

Figure 32:  A prototype report about velocity determination 

Once the stated parameters are provided, the general velocity can be estimated. Equation 
2 discusses velocity estimation based on the intersection angle between platform and 
vehicle directions, , the actual size of the vehicle, s, and the measured size of the 
vehicle, m, in two different scenarios: alongside and againstside direction. 
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Fig.31 illustrates a prototype report on statistical analysis of velocity estimation in basis 
of two types of the vehicles, passenger car and truck, respectively. The first column 
shows the calculated velocity, the second column is the number of extracted cars, the 
third is the number of the cars which are well-matched with the model in eq. 2. Indeed, 
the program uses this group of vehicles to estimate the velocity. The forth column 
shows the standard deviation of the velocity estimated, and the last is the error 
propagation model in basis of eq. 2. As can be seen in Fig. 33, due to lack of enough 
number of the passenger cars on the right side, the corresponding velocity isn’t 
calculated. The same situation is happened for the left side of the road, where there is 
no truck. The final result is provided by getting average from general velocity derived 
by passenger cars and trucks. 
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Figure 33:  Velocity estimation in basis of passenger cars, P, and trucks, T 

The operator must enter the platform velocity, LiDARV

If the operator press [Enter] key in response to above question, the previous entered 
value is loaded automatically 
Provided the alongside direction is not concluded, [R/L], there is still the chance of 
velocity estimation based on the existed information. 
The vehicles are also sorted into related lanes based on the lane width of 2.7 m. Fig. 34 
shows an example of a prototype data set in which the vehicles types on each lane plus 
the distance of that lane with respect to CL axes is reported 

Figure 34: The vehicles are placed in different lanes 

The default lane width can be adjusted in the macro [Divided_Side_To_Lane]
If the number of vehicles in each lane is great enough, the general velocity can be 
calculated for each lane particularly. Fig.35 shows an example of calculation the velocity 
for different lanes on the right and left side of a road. 

Figure 35: velocity estimation in basis of vehicles located on different lanes
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The lane velocity is applicable only if it is in the border of the average speed 
The velocity error is also calculated and reported for different lanes 
Generally, the velocity error of againstside is larger than the alongside direction 
If the number of vehicles on any side of the road is not enough to estimate the velocity, 
the operator can always enter a value as the velocity for that side, or set it equal to the 
calculated velocity of the opposite side, Fig. 36.

Figure 36:  If there is no vehicle, the velocity can be entered by operator  

8. Traffic flow estimation 

Once all vehicles have been successfully extracted from the road region, sorted into their 
own lanes, classified, and their general velocity have been calculated, the traffic stream is 
ready to evaluate for each lane in terms of density and flow.  

Density Parameter 

Traffic density is defined as the number of the vehicles present over a unit length at a 
given instant time. So, the next step is to calculate the average space of vehicles along a 
given lane. On the other hand, density is primarily calculated for each lane separately. 
For the left and right side, the summation of densities from all lanes of each side provides 
the final density estimate. Eq. 3 shows the model of density estimation: 
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where, L is the number of road lane on each side, n is the number of vehicles on the lane, 
and S is the distance between the vehicles moving in the same direction. Furthermore, 
this distance is measured between corresponding points (front to front) of consecutive 
vehicles.

The density error is also calculated and reported for each lane

Flow Parameter 

Flow can be defined as the number of vehicles passing a given point during a given 
period of the time, typically one hour.  

VelocityDensityFlow *  (4) 
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By multiplying the density of each lane with corresponding velocity, the flow is 
calculated for that lane. For the left and right side, the summation of flows from all lanes 
of each side provides the final flow estimate. Fig.37 shows the final report of traffic 
stream parameters.  

The traffic flow error is usually larger on against side direction 

Figure 37:  The final report includes the density and flow parameters as well as 
corresponding errors values 
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